New method to generate mid-infrared optical frequency combs for molecular spectroscopy: Dissertation

    Research output: ThesisDissertation

    Abstract

    In the current study, I experimentally demonstrate a new technique for generating a midinfrared optical frequency comb (OFC). The motivation for this work stems from importance of coherent light sources to molecular spectroscopy, particularly in the mid-infrared region, where the strong fundamental molecular vibration-rotation absorption bands lie. Coherent light sources are needed to provide the best available sensitivity and selectivity in the spectroscopy experiments. As a prelude for the OFC research, an optical parametric oscillator operating close to signal-idler degeneracy was also examined in this thesis.
    The OFC generator investigated here is based on cascaded quadratic optical nonlinearities (CQNs), an approach that was first discovered as a part of the current study. By applying the new method inside a continuous-wave pumped optical parametric oscillator (OPO), a highpower mid-infrared OFC was produced by simple near-infrared laser pumping.
    Here, I present a rigorous experimental study of the new mid-infrared OFC generator. In particular, I verify the CQN comb mode spacing uniformity and demonstrate tuning of the center wavelength, offset frequency, and the mode spacing of the mid-infrared comb. I also apply a parametric seeding technique to improve the spectral quality of the comb. Furthermore, I demonstrate that the CQN method is capable of generating multioctave-spanning composite frequency combs. These results demonstrate the potential of the new OFC generation method for demanding molecular spectroscopy experiments.
    Utilization of an OFC source in field applications of molecular spectroscopy requires a robust and compact experimental platform. At the end of this thesis, I present preliminary results of our work towards miniaturization of the CQN comb generator using an optical waveguide device.
    Original languageEnglish
    QualificationDoctor Degree
    Awarding Institution
    • University of Helsinki
    Supervisors/Advisors
    • Halonen, Lauri, Supervisor, External person
    • Vainio, Markku, Supervisor, External person
    Award date12 Jun 2018
    Publisher
    Print ISBNs978-951-51-4313-6
    Electronic ISBNs978-951-51-4314-3
    Publication statusPublished - 12 Jun 2018
    MoE publication typeG5 Doctoral dissertation (article)

    Fingerprint

    molecular spectroscopy
    nonlinearity
    generators
    theses
    coherent light
    parametric amplifiers
    light sources
    spacing
    laser pumping
    miniaturization
    inoculation
    stems
    optical waveguides
    infrared lasers
    continuous radiation
    platforms
    selectivity
    tuning
    absorption spectra
    vibration

    Cite this

    @phdthesis{69f16c96ea344cb1aca14bc663f52d8a,
    title = "New method to generate mid-infrared optical frequency combs for molecular spectroscopy: Dissertation",
    abstract = "In the current study, I experimentally demonstrate a new technique for generating a midinfrared optical frequency comb (OFC). The motivation for this work stems from importance of coherent light sources to molecular spectroscopy, particularly in the mid-infrared region, where the strong fundamental molecular vibration-rotation absorption bands lie. Coherent light sources are needed to provide the best available sensitivity and selectivity in the spectroscopy experiments. As a prelude for the OFC research, an optical parametric oscillator operating close to signal-idler degeneracy was also examined in this thesis.The OFC generator investigated here is based on cascaded quadratic optical nonlinearities (CQNs), an approach that was first discovered as a part of the current study. By applying the new method inside a continuous-wave pumped optical parametric oscillator (OPO), a highpower mid-infrared OFC was produced by simple near-infrared laser pumping.Here, I present a rigorous experimental study of the new mid-infrared OFC generator. In particular, I verify the CQN comb mode spacing uniformity and demonstrate tuning of the center wavelength, offset frequency, and the mode spacing of the mid-infrared comb. I also apply a parametric seeding technique to improve the spectral quality of the comb. Furthermore, I demonstrate that the CQN method is capable of generating multioctave-spanning composite frequency combs. These results demonstrate the potential of the new OFC generation method for demanding molecular spectroscopy experiments.Utilization of an OFC source in field applications of molecular spectroscopy requires a robust and compact experimental platform. At the end of this thesis, I present preliminary results of our work towards miniaturization of the CQN comb generator using an optical waveguide device.",
    author = "Ville Ulvila",
    year = "2018",
    month = "6",
    day = "12",
    language = "English",
    isbn = "978-951-51-4313-6",
    publisher = "University of Helsinki",
    address = "Finland",
    school = "University of Helsinki",

    }

    New method to generate mid-infrared optical frequency combs for molecular spectroscopy : Dissertation. / Ulvila, Ville.

    University of Helsinki, 2018. 45 p.

    Research output: ThesisDissertation

    TY - THES

    T1 - New method to generate mid-infrared optical frequency combs for molecular spectroscopy

    T2 - Dissertation

    AU - Ulvila, Ville

    PY - 2018/6/12

    Y1 - 2018/6/12

    N2 - In the current study, I experimentally demonstrate a new technique for generating a midinfrared optical frequency comb (OFC). The motivation for this work stems from importance of coherent light sources to molecular spectroscopy, particularly in the mid-infrared region, where the strong fundamental molecular vibration-rotation absorption bands lie. Coherent light sources are needed to provide the best available sensitivity and selectivity in the spectroscopy experiments. As a prelude for the OFC research, an optical parametric oscillator operating close to signal-idler degeneracy was also examined in this thesis.The OFC generator investigated here is based on cascaded quadratic optical nonlinearities (CQNs), an approach that was first discovered as a part of the current study. By applying the new method inside a continuous-wave pumped optical parametric oscillator (OPO), a highpower mid-infrared OFC was produced by simple near-infrared laser pumping.Here, I present a rigorous experimental study of the new mid-infrared OFC generator. In particular, I verify the CQN comb mode spacing uniformity and demonstrate tuning of the center wavelength, offset frequency, and the mode spacing of the mid-infrared comb. I also apply a parametric seeding technique to improve the spectral quality of the comb. Furthermore, I demonstrate that the CQN method is capable of generating multioctave-spanning composite frequency combs. These results demonstrate the potential of the new OFC generation method for demanding molecular spectroscopy experiments.Utilization of an OFC source in field applications of molecular spectroscopy requires a robust and compact experimental platform. At the end of this thesis, I present preliminary results of our work towards miniaturization of the CQN comb generator using an optical waveguide device.

    AB - In the current study, I experimentally demonstrate a new technique for generating a midinfrared optical frequency comb (OFC). The motivation for this work stems from importance of coherent light sources to molecular spectroscopy, particularly in the mid-infrared region, where the strong fundamental molecular vibration-rotation absorption bands lie. Coherent light sources are needed to provide the best available sensitivity and selectivity in the spectroscopy experiments. As a prelude for the OFC research, an optical parametric oscillator operating close to signal-idler degeneracy was also examined in this thesis.The OFC generator investigated here is based on cascaded quadratic optical nonlinearities (CQNs), an approach that was first discovered as a part of the current study. By applying the new method inside a continuous-wave pumped optical parametric oscillator (OPO), a highpower mid-infrared OFC was produced by simple near-infrared laser pumping.Here, I present a rigorous experimental study of the new mid-infrared OFC generator. In particular, I verify the CQN comb mode spacing uniformity and demonstrate tuning of the center wavelength, offset frequency, and the mode spacing of the mid-infrared comb. I also apply a parametric seeding technique to improve the spectral quality of the comb. Furthermore, I demonstrate that the CQN method is capable of generating multioctave-spanning composite frequency combs. These results demonstrate the potential of the new OFC generation method for demanding molecular spectroscopy experiments.Utilization of an OFC source in field applications of molecular spectroscopy requires a robust and compact experimental platform. At the end of this thesis, I present preliminary results of our work towards miniaturization of the CQN comb generator using an optical waveguide device.

    M3 - Dissertation

    SN - 978-951-51-4313-6

    PB - University of Helsinki

    ER -