Numerically stable method for kinetic electrons in gyrokinetic particle-in-cell simulation of toroidal plasmas

T. Korpilo (Corresponding Author), Jukka Heikkinen, S.J. Janhunen, T.P. Kiviniemi, S. Leerink, F. Ogando

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)

Abstract

The direct implicit method with a second-order implicit integration scheme is formulated for and applied to the electron parallel nonlinearity in global electrostatic gyrokinetic particle-in-cell simulations of toroidal fusion plasmas. The method shows improved numerical accuracy and stability properties compared to the direct implicit method with a first-order integration scheme. The conservation of total energy and toroidal angular momentum are analyzed by both techniques and the results are presented.
Original languageEnglish
Pages (from-to)22-29
JournalJournal of Computational Physics
Volume239
DOIs
Publication statusPublished - 2013
MoE publication typeA1 Journal article-refereed

Fingerprint

toroidal plasmas
Plasmas
Kinetics
Electrons
Angular momentum
kinetics
cells
conservation
Electrostatics
Conservation
electrons
Fusion reactions
angular momentum
simulation
fusion
nonlinearity
electrostatics
energy

Keywords

  • fusion plasma physics
  • gyrokinetic particle simulation
  • kinetic electrons

Cite this

Korpilo, T. ; Heikkinen, Jukka ; Janhunen, S.J. ; Kiviniemi, T.P. ; Leerink, S. ; Ogando, F. / Numerically stable method for kinetic electrons in gyrokinetic particle-in-cell simulation of toroidal plasmas. In: Journal of Computational Physics. 2013 ; Vol. 239. pp. 22-29.
@article{f1e281d380ac4940bcfe25e373ad0338,
title = "Numerically stable method for kinetic electrons in gyrokinetic particle-in-cell simulation of toroidal plasmas",
abstract = "The direct implicit method with a second-order implicit integration scheme is formulated for and applied to the electron parallel nonlinearity in global electrostatic gyrokinetic particle-in-cell simulations of toroidal fusion plasmas. The method shows improved numerical accuracy and stability properties compared to the direct implicit method with a first-order integration scheme. The conservation of total energy and toroidal angular momentum are analyzed by both techniques and the results are presented.",
keywords = "fusion plasma physics, gyrokinetic particle simulation, kinetic electrons",
author = "T. Korpilo and Jukka Heikkinen and S.J. Janhunen and T.P. Kiviniemi and S. Leerink and F. Ogando",
year = "2013",
doi = "10.1016/j.jcp.2012.12.033",
language = "English",
volume = "239",
pages = "22--29",
journal = "Journal of Computational Physics",
issn = "0021-9991",
publisher = "Academic Press",

}

Numerically stable method for kinetic electrons in gyrokinetic particle-in-cell simulation of toroidal plasmas. / Korpilo, T. (Corresponding Author); Heikkinen, Jukka; Janhunen, S.J.; Kiviniemi, T.P.; Leerink, S.; Ogando, F.

In: Journal of Computational Physics, Vol. 239, 2013, p. 22-29.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Numerically stable method for kinetic electrons in gyrokinetic particle-in-cell simulation of toroidal plasmas

AU - Korpilo, T.

AU - Heikkinen, Jukka

AU - Janhunen, S.J.

AU - Kiviniemi, T.P.

AU - Leerink, S.

AU - Ogando, F.

PY - 2013

Y1 - 2013

N2 - The direct implicit method with a second-order implicit integration scheme is formulated for and applied to the electron parallel nonlinearity in global electrostatic gyrokinetic particle-in-cell simulations of toroidal fusion plasmas. The method shows improved numerical accuracy and stability properties compared to the direct implicit method with a first-order integration scheme. The conservation of total energy and toroidal angular momentum are analyzed by both techniques and the results are presented.

AB - The direct implicit method with a second-order implicit integration scheme is formulated for and applied to the electron parallel nonlinearity in global electrostatic gyrokinetic particle-in-cell simulations of toroidal fusion plasmas. The method shows improved numerical accuracy and stability properties compared to the direct implicit method with a first-order integration scheme. The conservation of total energy and toroidal angular momentum are analyzed by both techniques and the results are presented.

KW - fusion plasma physics

KW - gyrokinetic particle simulation

KW - kinetic electrons

U2 - 10.1016/j.jcp.2012.12.033

DO - 10.1016/j.jcp.2012.12.033

M3 - Article

VL - 239

SP - 22

EP - 29

JO - Journal of Computational Physics

JF - Journal of Computational Physics

SN - 0021-9991

ER -