Abstract
We have developed a robust array-in-well test platform based on an oligonucleotide array, combining advantages of simple instrumentation and new upconverting phosphor reporter technology. Upconverting inorganic lanthanide phosphors have a unique property of photoluminescence emission at visible wavelengths under near-infrared excitation. No autofluorescence is produced from the sample or support material, enabling a highly sensitive assay. In this study, the assay is performed in standard 96-well microtiter plates, making the technique easily adaptable to high-throughput analysis. The oligonucleotide array-in-well assay is employed to detect a selection of ten common adenovirus genotypes causing human infections. The study provides a demonstration of the advantages and potential of the upconverting phosphor-based reporter technology in multianalyte assays and anti-Stokes photoluminescence detection with an anti-Stokes photoluminescence imaging device.
Original language | English |
---|---|
Pages (from-to) | 1456-1461 |
Number of pages | 6 |
Journal | Analytical Chemistry |
Volume | 83 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2011 |
MoE publication type | A1 Journal article-refereed |