On-line detection of single-walled carbon nanotube formation during aerosol synthesis methods

Anna Moisala, Albert Nasibulin, Sergei D. Shandakov, Hua Jiang, Esko I. Kauppinen (Corresponding Author)

Research output: Contribution to journalArticleScientificpeer-review

68 Citations (Scopus)

Abstract

Differential electrical mobility (DMA) method for the on-line detection of single-walled carbon nanotubes (SWCNTs) formation was used for the first time. Three different gas-phase synthesis processes were used to produce SWCNTs via CO disproportionation in the presence of catalyst nanoparticles formed either by a hot wire generator method or via thermal decomposition of ferrocene or iron pentacarbonyl. The typical product measured with the DMA method was bundles of SWCNTs, which further agglomerated prior to the measurement. Despite the different product morphology and concentration, the on-line measurement was able to distinguish SWCNT formation in each experimental set-up as an increase in the geometric mean particle diameter and as a decrease in the total particle number concentration. Furthermore, information regarding the relative SWCNT concentration can also be obtained from the DMA measurement. A theoretical approach to the mobility of nonspherical particles in the electric field was successfully developed in order to convert the electrical mobility size of the high aspect ratio SWCNTs measured with DMA to the physical size of the product. Size-selected SWCNTs were studied with transmission electron microscopy in order to find the correlation between the on-line DMA measurement data and the SWCNT morphology.

Original languageEnglish
Pages (from-to)2066-2074
JournalCarbon
Volume43
Issue number10
DOIs
Publication statusPublished - 2005
MoE publication typeA1 Journal article-refereed

    Fingerprint

Keywords

  • nanotubes

Cite this

Moisala, A., Nasibulin, A., Shandakov, S. D., Jiang, H., & Kauppinen, E. I. (2005). On-line detection of single-walled carbon nanotube formation during aerosol synthesis methods. Carbon, 43(10), 2066-2074. https://doi.org/10.1016/j.carbon.2005.03.012