Abstract
Background
Algal mass occurrences are one of the most distinguishing effects of eutrophication in lakes and the coastal waters of the Baltic Sea. Algal bloom occurrence in water bodies varies greatly in terms of both space and time, even during short periods, which makes reliable monitoring of blooms difficult. In this paper, we explore the possibilities to extend the sensor network both spatially and temporally by applying participatory sensing to surface algal bloom monitoring in Finnish lakes and the coastal areas of the Baltic Sea.
Results
Two participatory sensing systems were used to collect visual algae observations by citizens: the mobile phone application Levävahti (Algae Watch) and the collaborative web service Järviwiki (Lake wiki), during the summers of 2011–2013. Citizen observations were compared with the visual observations performed by trained expert observers, and mean correlations between citizen and expert observations were calculated using the bootstrapping method: 0.72, 95% confidence interval (CI) [0.53 0.86]; 0.65, 95% CI [0.35 0.86]; and 0.56, 95% CI [0.29 0.76] for the years 2011, 2012 and 2013.
Conclusions
Surface algal bloom monitoring is needed to obtain data on algal bloom frequency and intensity, in particular in lakes where the use of satellite remote sensing has limitations and/or phytoplankton monitoring is infrequent or totally lacking. The correlations between expert and citizen observations suggest that citizen observers can provide additional information to support algal bloom monitoring of inland and coastal waters.
Algal mass occurrences are one of the most distinguishing effects of eutrophication in lakes and the coastal waters of the Baltic Sea. Algal bloom occurrence in water bodies varies greatly in terms of both space and time, even during short periods, which makes reliable monitoring of blooms difficult. In this paper, we explore the possibilities to extend the sensor network both spatially and temporally by applying participatory sensing to surface algal bloom monitoring in Finnish lakes and the coastal areas of the Baltic Sea.
Results
Two participatory sensing systems were used to collect visual algae observations by citizens: the mobile phone application Levävahti (Algae Watch) and the collaborative web service Järviwiki (Lake wiki), during the summers of 2011–2013. Citizen observations were compared with the visual observations performed by trained expert observers, and mean correlations between citizen and expert observations were calculated using the bootstrapping method: 0.72, 95% confidence interval (CI) [0.53 0.86]; 0.65, 95% CI [0.35 0.86]; and 0.56, 95% CI [0.29 0.76] for the years 2011, 2012 and 2013.
Conclusions
Surface algal bloom monitoring is needed to obtain data on algal bloom frequency and intensity, in particular in lakes where the use of satellite remote sensing has limitations and/or phytoplankton monitoring is infrequent or totally lacking. The correlations between expert and citizen observations suggest that citizen observers can provide additional information to support algal bloom monitoring of inland and coastal waters.
Original language | English |
---|---|
Article number | 24 |
Journal | Environmental Systems Research |
Volume | 3 |
Issue number | 24 |
DOIs | |
Publication status | Published - 2014 |
MoE publication type | A1 Journal article-refereed |