Performance of wall-stud cold-formed shear panels under monotonic and cyclic loading: Part II: Numerical modelling and performance analysis

L. A. Fülöp, D. Dubina

Research output: Contribution to journalArticleScientificpeer-review

97 Citations (Scopus)

Abstract

The main components to provide earthquake performance of a light-gauge steel house are the shear walls. Understanding shear wall behaviour and finding suitable hysteretic models is important in order to be able to build realistic finite element models and assess structural performance in case of earthquake. As for any building structure expected to exceed its elastic behaviour-range in case of earthquake, the interaction of design capacity, load bearing capacity and structural ductility will influence the performance. In this paper alternative design methods and hysteretic modeling techniques are presented. Based on tests described in Part I, a numerical equivalent model for hysteretic behavior of wall panels working in shear was built and used in 3D dynamic nonlinear analysis of cold-formed steel framed buildings. Preliminary conclusions refer to the effect of over-strength and ductility upon possible earthquake load reduction in case of light-gauge shear wall structures.

Original languageEnglish
Pages (from-to)339-349
Number of pages11
JournalThin-Walled Structures
Volume42
Issue number2
DOIs
Publication statusPublished - Feb 2004
MoE publication typeA1 Journal article-refereed

Keywords

  • Earthquake load reduction factor
  • Hysteretic modelling
  • Incremental dynamic analysis
  • Light-gauge steel shear walls
  • Time history analysis

Fingerprint

Dive into the research topics of 'Performance of wall-stud cold-formed shear panels under monotonic and cyclic loading: Part II: Numerical modelling and performance analysis'. Together they form a unique fingerprint.

Cite this