Planck early results. XII

Cluster Sunyaev-Zeldovich optical scaling relations

J.G. Bartlett (Corresponding Author), Jussi Tuovinen, Planck Collaboration

Research output: Contribution to journalArticleScientificpeer-review

42 Citations (Scopus)

Abstract

We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500 − N200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-richness relations (N200 − M500). We bin our individual measurements and detect the SZ signal down to the lowest richness systems (N200 = 10) with high significance, achieving a detection of the SZ signal in systems with mass as low as M500 ≈ 5 × 1013M. The observed Y500 − N200 relation is well modeled by a power law over the full richness range. It has a lower normalisation at given N200 than predicted based on X-ray models and published mass-richness relations. An X-ray subsample, however, does conform to the predicted scaling, and model predictions do reproduce the relation between our measured bin-average SZ signal and measured bin-average X-ray luminosities. At fixed richness, we find an intrinsic dispersion in the Y500 − N200 relation of 60% rising to of order 100% at low richness. Thanks to its all-sky coverage, Planck provides observations for more than 13000 MaxBCG clusters and an unprecedented SZ/optical data set, extending the list of known cluster scaling laws to include SZ-optical properties. The data set offers essential clues for models of galaxy formation. Moreover, the lower normalisation of the SZ-mass relation implied by the observed SZ-richness scaling has important consequences for cluster physics and cosmological studies with SZ clusters.
Original languageEnglish
Article numberA12
Number of pages10
JournalAstronomy and Astrophysics
Volume536
DOIs
Publication statusPublished - 2011
MoE publication typeA1 Journal article-refereed

Fingerprint

scaling
sky
filter
x rays
matched filters
optical property
galactic evolution
power law
physics
lists
scaling laws
catalogs
luminosity
filters
optical properties
prediction
predictions
normalisation

Keywords

  • Galaxies: clusters: intracluster medium
  • cosmic backround radiation
  • large-scale structure of Universe
  • cosmology: observations
  • galaxies: clusters: general

Cite this

Bartlett, J.G. ; Tuovinen, Jussi ; Planck Collaboration. / Planck early results. XII : Cluster Sunyaev-Zeldovich optical scaling relations. In: Astronomy and Astrophysics. 2011 ; Vol. 536.
@article{22d14ed0e5814e039a8c688b767a7ead,
title = "Planck early results. XII: Cluster Sunyaev-Zeldovich optical scaling relations",
abstract = "We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500 − N200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-richness relations (N200 − M500). We bin our individual measurements and detect the SZ signal down to the lowest richness systems (N200 = 10) with high significance, achieving a detection of the SZ signal in systems with mass as low as M500 ≈ 5 × 1013 M⊙. The observed Y500 − N200 relation is well modeled by a power law over the full richness range. It has a lower normalisation at given N200 than predicted based on X-ray models and published mass-richness relations. An X-ray subsample, however, does conform to the predicted scaling, and model predictions do reproduce the relation between our measured bin-average SZ signal and measured bin-average X-ray luminosities. At fixed richness, we find an intrinsic dispersion in the Y500 − N200 relation of 60{\%} rising to of order 100{\%} at low richness. Thanks to its all-sky coverage, Planck provides observations for more than 13000 MaxBCG clusters and an unprecedented SZ/optical data set, extending the list of known cluster scaling laws to include SZ-optical properties. The data set offers essential clues for models of galaxy formation. Moreover, the lower normalisation of the SZ-mass relation implied by the observed SZ-richness scaling has important consequences for cluster physics and cosmological studies with SZ clusters.",
keywords = "Galaxies: clusters: intracluster medium, cosmic backround radiation, large-scale structure of Universe, cosmology: observations, galaxies: clusters: general",
author = "N. Aghanim and M. Arnaud and J.G. Bartlett and Jussi Tuovinen and {Planck Collaboration}",
note = "Project code: 18080",
year = "2011",
doi = "10.1051/0004-6361/201116489",
language = "English",
volume = "536",
journal = "Astronomy and Astrophysics",
issn = "0004-6361",
publisher = "EDP Sciences",

}

Planck early results. XII : Cluster Sunyaev-Zeldovich optical scaling relations. / Bartlett, J.G. (Corresponding Author); Tuovinen, Jussi; Planck Collaboration.

In: Astronomy and Astrophysics, Vol. 536, A12, 2011.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Planck early results. XII

T2 - Cluster Sunyaev-Zeldovich optical scaling relations

AU - Aghanim, N.

AU - Arnaud, M.

AU - Bartlett, J.G.

AU - Tuovinen, Jussi

AU - Planck Collaboration

N1 - Project code: 18080

PY - 2011

Y1 - 2011

N2 - We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500 − N200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-richness relations (N200 − M500). We bin our individual measurements and detect the SZ signal down to the lowest richness systems (N200 = 10) with high significance, achieving a detection of the SZ signal in systems with mass as low as M500 ≈ 5 × 1013 M⊙. The observed Y500 − N200 relation is well modeled by a power law over the full richness range. It has a lower normalisation at given N200 than predicted based on X-ray models and published mass-richness relations. An X-ray subsample, however, does conform to the predicted scaling, and model predictions do reproduce the relation between our measured bin-average SZ signal and measured bin-average X-ray luminosities. At fixed richness, we find an intrinsic dispersion in the Y500 − N200 relation of 60% rising to of order 100% at low richness. Thanks to its all-sky coverage, Planck provides observations for more than 13000 MaxBCG clusters and an unprecedented SZ/optical data set, extending the list of known cluster scaling laws to include SZ-optical properties. The data set offers essential clues for models of galaxy formation. Moreover, the lower normalisation of the SZ-mass relation implied by the observed SZ-richness scaling has important consequences for cluster physics and cosmological studies with SZ clusters.

AB - We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500 − N200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-richness relations (N200 − M500). We bin our individual measurements and detect the SZ signal down to the lowest richness systems (N200 = 10) with high significance, achieving a detection of the SZ signal in systems with mass as low as M500 ≈ 5 × 1013 M⊙. The observed Y500 − N200 relation is well modeled by a power law over the full richness range. It has a lower normalisation at given N200 than predicted based on X-ray models and published mass-richness relations. An X-ray subsample, however, does conform to the predicted scaling, and model predictions do reproduce the relation between our measured bin-average SZ signal and measured bin-average X-ray luminosities. At fixed richness, we find an intrinsic dispersion in the Y500 − N200 relation of 60% rising to of order 100% at low richness. Thanks to its all-sky coverage, Planck provides observations for more than 13000 MaxBCG clusters and an unprecedented SZ/optical data set, extending the list of known cluster scaling laws to include SZ-optical properties. The data set offers essential clues for models of galaxy formation. Moreover, the lower normalisation of the SZ-mass relation implied by the observed SZ-richness scaling has important consequences for cluster physics and cosmological studies with SZ clusters.

KW - Galaxies: clusters: intracluster medium

KW - cosmic backround radiation

KW - large-scale structure of Universe

KW - cosmology: observations

KW - galaxies: clusters: general

U2 - 10.1051/0004-6361/201116489

DO - 10.1051/0004-6361/201116489

M3 - Article

VL - 536

JO - Astronomy and Astrophysics

JF - Astronomy and Astrophysics

SN - 0004-6361

M1 - A12

ER -