Planck early results. XXI: Properties of the interstellar medium in the Galactic plane

Jussi Tuovinen, Jussi Varis, D.J. Marshall (Corresponding Author), Planck Collaboration

    Research output: Contribution to journalArticleScientificpeer-review

    58 Citations (Scopus)

    Abstract

    Planck has observed the entire sky from 30 GHz to 857GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) in each of a number of Galactocentric rings. This technique provides the necessary information to study dust properties (emissivity, temperature, etc.), as well as other emission mechanisms as a function of Galactic radius. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely “dark gas”, as evidenced using Planck data, is included as an additional template, the first time such a component has been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as with higher frequency data from IRAS and DIRBE along with radio data at 1.4 GHz. The emission per column density of the gas templates allows us to create distinct spectral energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12μm). The resulting SEDs allow us to explore the contribution of various emission mechanisms to the Planck signal. Apart from the thermal dust and free-free emission, we have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We find the dust opacity in the solar neighbourhood, τ/NH = 0.92 ± 0.05 × 10-25   cm2 at 250 μm, with no significant variation with Galactic radius, even though the dust temperature is seen to vary from over 25 K to under 14 K. Furthermore, we show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactic disk. Anomalous emission is not clearly detected in the ionised phase, as free-free emission is seen to dominate. The derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for (25 ± 5)% (statistical) of the total emission at 30 GHz.
    Original languageEnglish
    Article numberA21
    Number of pages18
    JournalAstronomy and Astrophysics
    Volume536
    DOIs
    Publication statusPublished - 2011
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    dust
    templates
    gas
    spectral energy distribution
    radii
    synchrotrons
    gases
    vapor phases
    solar neighborhood
    monatomic gases
    rings
    polycyclic aromatic hydrocarbons
    Infrared Astronomy Satellite
    molecular gases
    emissivity
    opacity
    metal spinning
    tracers
    energy
    sky

    Keywords

    • ISM: general
    • Galaxy: general
    • radio continuum: ISM
    • submillimeter: ISM
    • infrared: ISM
    • radiation mechanisms: general

    Cite this

    @article{23ebef2e9b8c49afbf32c558b6027f42,
    title = "Planck early results. XXI: Properties of the interstellar medium in the Galactic plane",
    abstract = "Planck has observed the entire sky from 30 GHz to 857GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) in each of a number of Galactocentric rings. This technique provides the necessary information to study dust properties (emissivity, temperature, etc.), as well as other emission mechanisms as a function of Galactic radius. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely “dark gas”, as evidenced using Planck data, is included as an additional template, the first time such a component has been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as with higher frequency data from IRAS and DIRBE along with radio data at 1.4 GHz. The emission per column density of the gas templates allows us to create distinct spectral energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12μm). The resulting SEDs allow us to explore the contribution of various emission mechanisms to the Planck signal. Apart from the thermal dust and free-free emission, we have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We find the dust opacity in the solar neighbourhood, τ/NH = 0.92 ± 0.05 × 10-25   cm2 at 250 μm, with no significant variation with Galactic radius, even though the dust temperature is seen to vary from over 25 K to under 14 K. Furthermore, we show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactic disk. Anomalous emission is not clearly detected in the ionised phase, as free-free emission is seen to dominate. The derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for (25 ± 5){\%} (statistical) of the total emission at 30 GHz.",
    keywords = "ISM: general, Galaxy: general, radio continuum: ISM, submillimeter: ISM, infrared: ISM, radiation mechanisms: general",
    author = "A. Abergel and P.A.R. Ade and N. Aghanim and Jussi Tuovinen and Jussi Varis and D.J. Marshall and {Planck Collaboration}",
    note = "Project code: 18080",
    year = "2011",
    doi = "10.1051/0004-6361/201116455",
    language = "English",
    volume = "536",
    journal = "Astronomy and Astrophysics",
    issn = "0004-6361",
    publisher = "EDP Sciences",

    }

    Planck early results. XXI : Properties of the interstellar medium in the Galactic plane. / Tuovinen, Jussi; Varis, Jussi; Marshall, D.J. (Corresponding Author); Planck Collaboration.

    In: Astronomy and Astrophysics, Vol. 536, A21, 2011.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - Planck early results. XXI

    T2 - Properties of the interstellar medium in the Galactic plane

    AU - Abergel, A.

    AU - Ade, P.A.R.

    AU - Aghanim, N.

    AU - Tuovinen, Jussi

    AU - Varis, Jussi

    AU - Marshall, D.J.

    AU - Planck Collaboration

    N1 - Project code: 18080

    PY - 2011

    Y1 - 2011

    N2 - Planck has observed the entire sky from 30 GHz to 857GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) in each of a number of Galactocentric rings. This technique provides the necessary information to study dust properties (emissivity, temperature, etc.), as well as other emission mechanisms as a function of Galactic radius. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely “dark gas”, as evidenced using Planck data, is included as an additional template, the first time such a component has been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as with higher frequency data from IRAS and DIRBE along with radio data at 1.4 GHz. The emission per column density of the gas templates allows us to create distinct spectral energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12μm). The resulting SEDs allow us to explore the contribution of various emission mechanisms to the Planck signal. Apart from the thermal dust and free-free emission, we have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We find the dust opacity in the solar neighbourhood, τ/NH = 0.92 ± 0.05 × 10-25   cm2 at 250 μm, with no significant variation with Galactic radius, even though the dust temperature is seen to vary from over 25 K to under 14 K. Furthermore, we show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactic disk. Anomalous emission is not clearly detected in the ionised phase, as free-free emission is seen to dominate. The derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for (25 ± 5)% (statistical) of the total emission at 30 GHz.

    AB - Planck has observed the entire sky from 30 GHz to 857GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) in each of a number of Galactocentric rings. This technique provides the necessary information to study dust properties (emissivity, temperature, etc.), as well as other emission mechanisms as a function of Galactic radius. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely “dark gas”, as evidenced using Planck data, is included as an additional template, the first time such a component has been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as with higher frequency data from IRAS and DIRBE along with radio data at 1.4 GHz. The emission per column density of the gas templates allows us to create distinct spectral energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12μm). The resulting SEDs allow us to explore the contribution of various emission mechanisms to the Planck signal. Apart from the thermal dust and free-free emission, we have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We find the dust opacity in the solar neighbourhood, τ/NH = 0.92 ± 0.05 × 10-25   cm2 at 250 μm, with no significant variation with Galactic radius, even though the dust temperature is seen to vary from over 25 K to under 14 K. Furthermore, we show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactic disk. Anomalous emission is not clearly detected in the ionised phase, as free-free emission is seen to dominate. The derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for (25 ± 5)% (statistical) of the total emission at 30 GHz.

    KW - ISM: general

    KW - Galaxy: general

    KW - radio continuum: ISM

    KW - submillimeter: ISM

    KW - infrared: ISM

    KW - radiation mechanisms: general

    U2 - 10.1051/0004-6361/201116455

    DO - 10.1051/0004-6361/201116455

    M3 - Article

    VL - 536

    JO - Astronomy and Astrophysics

    JF - Astronomy and Astrophysics

    SN - 0004-6361

    M1 - A21

    ER -