TY - JOUR
T1 - Potential of Satellite Spectral Resolution Vegetation Indices for Estimation of Canopy Chlorophyll Content of Field Crops
T2 - Mitigating Effects of Leaf Angle Distribution
AU - Zou, Xiaochen
AU - Jin, Jun
AU - Mõttus, Matti
N1 - Funding Information:
This research was supported by the National Science Foundation of China (grant No. 41801243) and the Academy of Finland (grant No. 317387).
PY - 2023/3
Y1 - 2023/3
N2 - Accurate estimation of canopy chlorophyll content (CCC) is critically important for agricultural production management. However, vegetation indices derived from canopy reflectance are influenced by canopy structure, which limits their application across species and seasonality. For horizontally homogenous canopies such as field crops, LAI and leaf inclination angle distribution or leaf mean tilt angle (MTA) are two biophysical characteristics determining canopy structure. Since CCC is relevant to LAI, MTA is the only structural parameter affecting the correlation between CCC and vegetation indices. To date, there are few vegetation indices designed to minimize MTA effects for CCC estimation. Herein, in this study, CCC-sensitive and MTA-insensitive satellite broadband vegetation indices are developed for crop canopy chlorophyll content estimation. The most efficient broadband vegetation indices for four satellite sensors (Sentinel-2, RapidEye, WorldView-2 and GaoFen-6) with red edge channels were identified (in the context of various vegetation index types) using simulated satellite broadband reflectance based on field measurements and validated with PROSAIL model simulations. The results indicate that developed vegetation indices present strong correlations with CCC and weak correlations with MTA, with overall R2 of 0.76–0.80 and 0.84–0.95 for CCC and R2 of 0.00 and 0.00–0.04 in the field measured data and model simulations, respectively. The best vegetation indices identified in this study are the soil-adjusted index type index SAI (B6, B7) for Sentinel-2, Verrelts’s three-band spectral index type index BSI-V (NIR1, Red, Red Edge) for WorldView-2, Tian’s three-band spectral index type index BSI-T (Red Edge, Green, NIR) for RapidEye and difference index type index DI (B6, B4) for GaoFen-6. The identified indices can potentially be used for crop CCC estimation across species and seasonality. However, real satellite datasets and more crop species need to be tested in further studies.
AB - Accurate estimation of canopy chlorophyll content (CCC) is critically important for agricultural production management. However, vegetation indices derived from canopy reflectance are influenced by canopy structure, which limits their application across species and seasonality. For horizontally homogenous canopies such as field crops, LAI and leaf inclination angle distribution or leaf mean tilt angle (MTA) are two biophysical characteristics determining canopy structure. Since CCC is relevant to LAI, MTA is the only structural parameter affecting the correlation between CCC and vegetation indices. To date, there are few vegetation indices designed to minimize MTA effects for CCC estimation. Herein, in this study, CCC-sensitive and MTA-insensitive satellite broadband vegetation indices are developed for crop canopy chlorophyll content estimation. The most efficient broadband vegetation indices for four satellite sensors (Sentinel-2, RapidEye, WorldView-2 and GaoFen-6) with red edge channels were identified (in the context of various vegetation index types) using simulated satellite broadband reflectance based on field measurements and validated with PROSAIL model simulations. The results indicate that developed vegetation indices present strong correlations with CCC and weak correlations with MTA, with overall R2 of 0.76–0.80 and 0.84–0.95 for CCC and R2 of 0.00 and 0.00–0.04 in the field measured data and model simulations, respectively. The best vegetation indices identified in this study are the soil-adjusted index type index SAI (B6, B7) for Sentinel-2, Verrelts’s three-band spectral index type index BSI-V (NIR1, Red, Red Edge) for WorldView-2, Tian’s three-band spectral index type index BSI-T (Red Edge, Green, NIR) for RapidEye and difference index type index DI (B6, B4) for GaoFen-6. The identified indices can potentially be used for crop CCC estimation across species and seasonality. However, real satellite datasets and more crop species need to be tested in further studies.
KW - broadband vegetation indices
KW - chlorophyll content
KW - GaoFen-6
KW - leaf angle distribution
KW - RapidEye
KW - Sentinel-2
KW - WorldView-2
UR - http://www.scopus.com/inward/record.url?scp=85149930945&partnerID=8YFLogxK
U2 - 10.3390/rs15051234
DO - 10.3390/rs15051234
M3 - Article
AN - SCOPUS:85149930945
SN - 2072-4292
VL - 15
JO - Remote Sensing
JF - Remote Sensing
IS - 5
M1 - 1234
ER -