TY - JOUR
T1 - Preclinical immunogenicity and protective efficacy of a SARS-CoV-2 RBD-based vaccine produced with the thermophilic filamentous fungal expression system Thermothelomyces heterothallica C1
AU - Gonzalez-Hernandez, Mariana
AU - Kaiser, Franziska Karola
AU - Steffen, Imke
AU - Ciurkiewicz, Malgorzata
AU - van Amerongen, Geert
AU - Tchelet, Ronen
AU - Emalfarb, Mark
AU - Saloheimo, Markku
AU - Wiebe, Marilyn G.
AU - Vitikainen, Marika
AU - Albulescu, Irina C.
AU - Bosch, Berend Jan
AU - Baumgärtner, Wolfgang
AU - Haagmans, Bart L.
AU - Osterhaus, Albert D.M.E.
N1 - Funding Information:
This study was performed as part of the Zoonotic Anticipation and Preparedness Initiative (ZAPI project) [Innovative Medicines initiative (IMI) grant 115760], with assistance and financial support from IMI and the European Commission and contributions from EFPIA partners. BH is supported by the NIH/NIAID Centers of Excellence for Influenza Research and Response (CEIRR) under contract 75N93021C00014, Icahn School of Medicine at Mt. Sinai. This research was also funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation, 398066876/GRK 2485/1, to AO, FK, IS, and WB), by the Ministry of Science and Culture of Lower Saxony in Germany (14 – 76103–184 CORONA-15/20, to WB and AO), and by the COVID-19 Research Network of the State of Lower Saxony (COFONI) with funding from the ministry of science and culture of Lower Saxony, Germany (14–76403–184, to FA, MC, and WB).This Open Access publication was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 491094227 “Open Access Publication Costs” and the University of Veterinary Medicine Hannover Foundation. IA was funded through the Utrecht Molecular Immunology Hub (Utrecht University). Acknowledgments
Publisher Copyright:
Copyright © 2023 Gonzalez-Hernandez, Kaiser, Steffen, Ciurkiewicz, van Amerongen, Tchelet, Emalfarb, Saloheimo, Wiebe, Vitikainen, Albulescu, Bosch, Baumgärtner, Haagmans and Osterhaus.
PY - 2023
Y1 - 2023
N2 - Introduction: The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. Methods: A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. Results: One dose of 10-μg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. Discussion: Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system.
AB - Introduction: The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. Methods: A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. Results: One dose of 10-μg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. Discussion: Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system.
KW - C1
KW - filamentous fungus
KW - hamster
KW - receptor-binding domain
KW - SARS-CoV-2
KW - Thermothelomyces heterothallica
KW - vaccine
UR - http://www.scopus.com/inward/record.url?scp=85163322502&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2023.1204834
DO - 10.3389/fimmu.2023.1204834
M3 - Article
C2 - 37359531
AN - SCOPUS:85163322502
SN - 1664-3224
VL - 14
JO - Frontiers in Immunology
JF - Frontiers in Immunology
M1 - 1204834
ER -