TY - JOUR
T1 - Preparation and characterisation of alfa-methylstyrene-butadiene latexes for paper coating applications
AU - Laitinen, Antero
AU - Alkio, Martti
AU - Forsström, Ulla
AU - Harlin, Ali
AU - Heikkinen, Harri
AU - Kaunisto, Juha
AU - Kokko, Annaleena
AU - Rautkoski, Hille
AU - Räsänen, Lea
PY - 2012
Y1 - 2012
N2 - The purpose of this work is to demonstrate how α-methylstyrene (AMS) can replace styrene in preparing styrene–butadiene (SB) type latexes and to compare the properties of the paper coating of the prepared α-methylstyrene–butadiene emulsion with the commercial styrene–butadiene latex reference sample. A lot of work is nowadays being conducted on different biorefinery concepts replacing fossil oil with biomass based raw materials due to the expected rise of the fossil oil cost. Aromatics can in principle be produced from renewable raw materials, such as lignin, sugars and terpenes for example. The potential methods include thermochemical conversions, catalytic fast pyrolysis, metabolic engineering, catalytic aromatisation and dehydrogenation among others. Terpenes, such as α-limonene and pinene, are possible sources of aromatics, and they can indeed be catalytically converted to p-cymene. Industrial hydrodealkylation and disproportionation processes developed by major petrochemical companies can further convert p-cymene to BTX aromatics or simultaneously dehydrogenate the alkyl chain of p-cymene to styrenic monomers such as α-methylstyrene. Based on the measured paper properties for uncalendered and calendered coated samples, AMS proved to be adequate to replace the oil based styrene in commercial reference SB latexes. Even though the emulsion polymerisation for the α-methylstyrene–butadiene latex was not optimised, almost all tested properties were at least equally good as in the commercial reference sample. α-Methylstyrene containing coating colours had slightly higher viscosity than the other coating colours. Coating colours containing α-methylstyrene seems to have an improved water retention compared to the commercial reference styrene–butadiene latex coating colour and the laboratory prepared styrene–butadiene coating colour. The paper coated with the commercial reference latex containing coating colour was less porous than the other coated papers. Despite of that, both dry and wet surface strength were at least equally good as in the case of the commercial reference latex. The results are promising when thinking of the future development of the bio-based latexes.
AB - The purpose of this work is to demonstrate how α-methylstyrene (AMS) can replace styrene in preparing styrene–butadiene (SB) type latexes and to compare the properties of the paper coating of the prepared α-methylstyrene–butadiene emulsion with the commercial styrene–butadiene latex reference sample. A lot of work is nowadays being conducted on different biorefinery concepts replacing fossil oil with biomass based raw materials due to the expected rise of the fossil oil cost. Aromatics can in principle be produced from renewable raw materials, such as lignin, sugars and terpenes for example. The potential methods include thermochemical conversions, catalytic fast pyrolysis, metabolic engineering, catalytic aromatisation and dehydrogenation among others. Terpenes, such as α-limonene and pinene, are possible sources of aromatics, and they can indeed be catalytically converted to p-cymene. Industrial hydrodealkylation and disproportionation processes developed by major petrochemical companies can further convert p-cymene to BTX aromatics or simultaneously dehydrogenate the alkyl chain of p-cymene to styrenic monomers such as α-methylstyrene. Based on the measured paper properties for uncalendered and calendered coated samples, AMS proved to be adequate to replace the oil based styrene in commercial reference SB latexes. Even though the emulsion polymerisation for the α-methylstyrene–butadiene latex was not optimised, almost all tested properties were at least equally good as in the commercial reference sample. α-Methylstyrene containing coating colours had slightly higher viscosity than the other coating colours. Coating colours containing α-methylstyrene seems to have an improved water retention compared to the commercial reference styrene–butadiene latex coating colour and the laboratory prepared styrene–butadiene coating colour. The paper coated with the commercial reference latex containing coating colour was less porous than the other coated papers. Despite of that, both dry and wet surface strength were at least equally good as in the case of the commercial reference latex. The results are promising when thinking of the future development of the bio-based latexes.
KW - Alfa-methylstyrene
KW - latexes
KW - paper coating
U2 - 10.1016/j.porgcoat.2012.07.004
DO - 10.1016/j.porgcoat.2012.07.004
M3 - Article
SN - 0300-9440
VL - 75
SP - 411
EP - 419
JO - Progress in Organic Coatings
JF - Progress in Organic Coatings
IS - 4
ER -