Probabilistic safety assessment and optimal control of hazardous technological systems

A marked point process approach: Dissertation

Research output: ThesisDissertationCollection of Articles

1 Citation (Scopus)

Abstract

Probabilistic safety assessment (PSA) and decision analysis are methods used for supporting risk management of hazards arising from technological systems. These methods are applied more often also in operational risk management, for instance, in the nuclear safety field. Operational risk management sets new requirements for modelling of systems and problems, since the context is dynamic compared with the static decision-making situation assumed in conventional risk and decision analysis approaches. This thesis applies a marked point process approach to represent dynamically the hazards of a technological process. The approach is applied here to risk follow-up and the problem of optimal control. Risk follow-up by PSA provides a systematic method for analysing incidents. In a retrospective risk assessment, operational events can turn out to be important in several respects. In order to highlight such differences, several alternative approaches should be used in parallel, as presented in this thesis. A period of actual operating history from a Finnish nuclear power plant is analysed. The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant. The thesis promotes use of the utility function as the objective function in optimization of risk management strategies. Compared with present approaches based on e.g. probabilistic safety criteria and ALARP principle (As Low As Reasonably Practicable), the utility theory would increase coherence in the analysis of different problems. The choice of utility function is here related to the problem of risk acceptance, i.e. probabilistic safety criteria are analysed using a utility function model. Conditions for a utility function satisfying the risk acceptance criterion are derived.
Original languageEnglish
Awarding Institution
  • Helsinki University of Technology
Supervisors/Advisors
  • Hämäläinen, Raimo, Supervisor, External person
Place of PublicationEspoo
Publisher
Print ISBNs951-38-5049-8
Publication statusPublished - 1997
MoE publication typeG5 Doctoral dissertation (article)

Fingerprint

Risk management
Decision theory
Nuclear power plants
Hazards
Plant shutdowns
Risk analysis
Random processes
Risk assessment
Decision making

Keywords

  • probability theory
  • decision theory
  • reliability
  • safety factor
  • safety engineering
  • risk analysis
  • utilization
  • mathematical models
  • operations research
  • theses

Cite this

@phdthesis{bb3b488908114d148075b4bbd41d53f2,
title = "Probabilistic safety assessment and optimal control of hazardous technological systems: A marked point process approach: Dissertation",
abstract = "Probabilistic safety assessment (PSA) and decision analysis are methods used for supporting risk management of hazards arising from technological systems. These methods are applied more often also in operational risk management, for instance, in the nuclear safety field. Operational risk management sets new requirements for modelling of systems and problems, since the context is dynamic compared with the static decision-making situation assumed in conventional risk and decision analysis approaches. This thesis applies a marked point process approach to represent dynamically the hazards of a technological process. The approach is applied here to risk follow-up and the problem of optimal control. Risk follow-up by PSA provides a systematic method for analysing incidents. In a retrospective risk assessment, operational events can turn out to be important in several respects. In order to highlight such differences, several alternative approaches should be used in parallel, as presented in this thesis. A period of actual operating history from a Finnish nuclear power plant is analysed. The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant. The thesis promotes use of the utility function as the objective function in optimization of risk management strategies. Compared with present approaches based on e.g. probabilistic safety criteria and ALARP principle (As Low As Reasonably Practicable), the utility theory would increase coherence in the analysis of different problems. The choice of utility function is here related to the problem of risk acceptance, i.e. probabilistic safety criteria are analysed using a utility function model. Conditions for a utility function satisfying the risk acceptance criterion are derived.",
keywords = "probability theory, decision theory, reliability, safety factor, safety engineering, risk analysis, utilization, mathematical models, operations research, theses",
author = "Jan Holmberg",
year = "1997",
language = "English",
isbn = "951-38-5049-8",
series = "VTT Publications",
publisher = "VTT Technical Research Centre of Finland",
number = "305",
address = "Finland",
school = "Helsinki University of Technology",

}

Probabilistic safety assessment and optimal control of hazardous technological systems : A marked point process approach: Dissertation. / Holmberg, Jan.

Espoo : VTT Technical Research Centre of Finland, 1997. 32 p.

Research output: ThesisDissertationCollection of Articles

TY - THES

T1 - Probabilistic safety assessment and optimal control of hazardous technological systems

T2 - A marked point process approach: Dissertation

AU - Holmberg, Jan

PY - 1997

Y1 - 1997

N2 - Probabilistic safety assessment (PSA) and decision analysis are methods used for supporting risk management of hazards arising from technological systems. These methods are applied more often also in operational risk management, for instance, in the nuclear safety field. Operational risk management sets new requirements for modelling of systems and problems, since the context is dynamic compared with the static decision-making situation assumed in conventional risk and decision analysis approaches. This thesis applies a marked point process approach to represent dynamically the hazards of a technological process. The approach is applied here to risk follow-up and the problem of optimal control. Risk follow-up by PSA provides a systematic method for analysing incidents. In a retrospective risk assessment, operational events can turn out to be important in several respects. In order to highlight such differences, several alternative approaches should be used in parallel, as presented in this thesis. A period of actual operating history from a Finnish nuclear power plant is analysed. The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant. The thesis promotes use of the utility function as the objective function in optimization of risk management strategies. Compared with present approaches based on e.g. probabilistic safety criteria and ALARP principle (As Low As Reasonably Practicable), the utility theory would increase coherence in the analysis of different problems. The choice of utility function is here related to the problem of risk acceptance, i.e. probabilistic safety criteria are analysed using a utility function model. Conditions for a utility function satisfying the risk acceptance criterion are derived.

AB - Probabilistic safety assessment (PSA) and decision analysis are methods used for supporting risk management of hazards arising from technological systems. These methods are applied more often also in operational risk management, for instance, in the nuclear safety field. Operational risk management sets new requirements for modelling of systems and problems, since the context is dynamic compared with the static decision-making situation assumed in conventional risk and decision analysis approaches. This thesis applies a marked point process approach to represent dynamically the hazards of a technological process. The approach is applied here to risk follow-up and the problem of optimal control. Risk follow-up by PSA provides a systematic method for analysing incidents. In a retrospective risk assessment, operational events can turn out to be important in several respects. In order to highlight such differences, several alternative approaches should be used in parallel, as presented in this thesis. A period of actual operating history from a Finnish nuclear power plant is analysed. The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant. The thesis promotes use of the utility function as the objective function in optimization of risk management strategies. Compared with present approaches based on e.g. probabilistic safety criteria and ALARP principle (As Low As Reasonably Practicable), the utility theory would increase coherence in the analysis of different problems. The choice of utility function is here related to the problem of risk acceptance, i.e. probabilistic safety criteria are analysed using a utility function model. Conditions for a utility function satisfying the risk acceptance criterion are derived.

KW - probability theory

KW - decision theory

KW - reliability

KW - safety factor

KW - safety engineering

KW - risk analysis

KW - utilization

KW - mathematical models

KW - operations research

KW - theses

M3 - Dissertation

SN - 951-38-5049-8

T3 - VTT Publications

PB - VTT Technical Research Centre of Finland

CY - Espoo

ER -