Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae

Research output: Contribution to journalArticleScientificpeer-review

21 Citations (Scopus)

Abstract

The important platform chemicals ethylene glycol and glycolic acid were produced via the oxidative D-xylose pathway in the yeast Saccharomyces cerevisiae. The expression of genes encoding D-xylose dehydrogenase (XylB) and D-xylonate dehydratase (XylD) from Caulobacter crescentus and YagE or YjhH aldolase and aldehyde dehydrogenase AldA from Escherichia coli enabled glycolic acid production from D-xylose up to 150 mg/L. In strains expressing only xylB and xylD, 29 mg/L 2-keto-3-deoxyxylonic acid [(S)-4,5-dihydroxy-2-oxopentanoic acid] (2K3DXA) was produced and D-xylonic acid accumulated to ca. 9 g/L. A significant amount of D-xylonic acid (ca. 14%) was converted to 3-deoxypentonic acid (3DPA), and also, 3,4-dihydroxybutyric acid was formed. 2K3DXA was further converted to glycolaldehyde when genes encoding by either YagE or YjhH aldolase from E. coli were expressed. Reduction of glycolaldehyde to ethylene glycol by an endogenous aldo-keto reductase activity resulted further in accumulation of ethylene glycol of 14 mg/L. The possibility of simultaneous production of lactic and glycolic acids was evaluated by expression of gene encoding lactate dehydrogenase ldhL from Lactobacillus helveticus together with aldA. Interestingly, this increased the accumulation of glycolic acid to 1 g/L. The D-xylonate dehydratase activity in yeast was notably low, possibly due to inefficient Fe–S cluster synthesis in the yeast cytosol, and leading to D-xylonic acid accumulation. The dehydratase activity was significantly improved by targeting its expression to mitochondria or by altering the Fe–S cluster metabolism of the cells with FRA2 deletion.

Original languageEnglish
Pages (from-to)8151-8163
Number of pages13
JournalApplied Microbiology and Biotechnology
Volume101
Issue number22
DOIs
Publication statusPublished - 1 Nov 2017
MoE publication typeA1 Journal article-refereed

    Fingerprint

Keywords

  • D-Xylonic acid
  • D-Xylose
  • ethylene glycol
  • glycolic acid
  • saccharomyces cerevisiae

Cite this