Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus)

J. Mailloux, B. Alper, Y. Baranov, A. Becoulet, A. Cardinali, C. Castaldo, R. Cesario, G. Conway, C. Challis, F. Crisanti, M. de Baar, P. de Vries, A. Ekedahl, K. Erents, C. Gowers, N. Hawkes, G. Hogeweij, F. Imbeaux, E. Joffrin, X. LitaudonP. Lomas, G. Matthews, D. Mazon, V. Pericoli, R. Prentice, F. Rimini, Y. Sarazin, B. Stratton, A. Tuccillo, Tuomas Tala, K.-D. Zastrow, Contributors to the EFDA-JET Work Programme

    Research output: Contribution to journalArticleScientificpeer-review

    61 Citations (Scopus)

    Abstract

    In optimized shear plasmas in the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)], safety factor (q) profiles with negative magnetic shear are produced by applying lower hybrid (LH) waves during the plasma current ramp-up phase. These plasmas produce a barrier to the electron energy transport. The radius at which the barrier is located increases with the LH wave power. When heated with high power from ion cyclotron resonance heating and neutral beam injection, they can additionally produce transient internal transport barriers (ITBs) seen on the ion temperature, electron density, and toroidal rotation velocity profiles. Due to recent improvements in coupling, q profile control with LH current drive in ITB plasmas with strong combined heating can be explored. These new experiments have led to ITBs sustained for several seconds by the LH wave. Simulations show that the current driven by the LH waves peaks at the ITB location, indicating that it can act in the region of low magnetic shear.
    Original languageEnglish
    Pages (from-to)2156-2164
    JournalPhysics of Plasmas
    Volume9
    Issue number5
    DOIs
    Publication statusPublished - 2002
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    Joint European Torus
    heating
    shear
    safety factors
    beam injection
    plasma currents
    neutral beams
    ion temperature
    cyclotron resonance
    profiles
    ramps
    velocity distribution
    fusion
    electron energy
    radii

    Keywords

    • plasma toroidal confinement
    • plasma transport processes
    • plasma hybrid waves
    • plasma beam injection heating
    • fusion reactor safety
    • plasma
    • plasma density
    • plasma temperature
    • electron density
    • plasma diagnostics
    • plasma simulation
    • plasma radiofrequency heating

    Cite this

    Mailloux, J., Alper, B., Baranov, Y., Becoulet, A., Cardinali, A., Castaldo, C., ... Programme, C. T. T. EFDA-JET. W. (2002). Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus). Physics of Plasmas, 9(5), 2156-2164. https://doi.org/10.1063/1.1469026
    Mailloux, J. ; Alper, B. ; Baranov, Y. ; Becoulet, A. ; Cardinali, A. ; Castaldo, C. ; Cesario, R. ; Conway, G. ; Challis, C. ; Crisanti, F. ; de Baar, M. ; de Vries, P. ; Ekedahl, A. ; Erents, K. ; Gowers, C. ; Hawkes, N. ; Hogeweij, G. ; Imbeaux, F. ; Joffrin, E. ; Litaudon, X. ; Lomas, P. ; Matthews, G. ; Mazon, D. ; Pericoli, V. ; Prentice, R. ; Rimini, F. ; Sarazin, Y. ; Stratton, B. ; Tuccillo, A. ; Tala, Tuomas ; Zastrow, K.-D. ; Programme, Contributors to the EFDA-JET Work. / Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus). In: Physics of Plasmas. 2002 ; Vol. 9, No. 5. pp. 2156-2164.
    @article{d0bf66c0aada4a5384b385369ab7313a,
    title = "Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus)",
    abstract = "In optimized shear plasmas in the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)], safety factor (q) profiles with negative magnetic shear are produced by applying lower hybrid (LH) waves during the plasma current ramp-up phase. These plasmas produce a barrier to the electron energy transport. The radius at which the barrier is located increases with the LH wave power. When heated with high power from ion cyclotron resonance heating and neutral beam injection, they can additionally produce transient internal transport barriers (ITBs) seen on the ion temperature, electron density, and toroidal rotation velocity profiles. Due to recent improvements in coupling, q profile control with LH current drive in ITB plasmas with strong combined heating can be explored. These new experiments have led to ITBs sustained for several seconds by the LH wave. Simulations show that the current driven by the LH waves peaks at the ITB location, indicating that it can act in the region of low magnetic shear.",
    keywords = "plasma toroidal confinement, plasma transport processes, plasma hybrid waves, plasma beam injection heating, fusion reactor safety, plasma, plasma density, plasma temperature, electron density, plasma diagnostics, plasma simulation, plasma radiofrequency heating",
    author = "J. Mailloux and B. Alper and Y. Baranov and A. Becoulet and A. Cardinali and C. Castaldo and R. Cesario and G. Conway and C. Challis and F. Crisanti and {de Baar}, M. and {de Vries}, P. and A. Ekedahl and K. Erents and C. Gowers and N. Hawkes and G. Hogeweij and F. Imbeaux and E. Joffrin and X. Litaudon and P. Lomas and G. Matthews and D. Mazon and V. Pericoli and R. Prentice and F. Rimini and Y. Sarazin and B. Stratton and A. Tuccillo and Tuomas Tala and K.-D. Zastrow and Programme, {Contributors to the EFDA-JET Work}",
    year = "2002",
    doi = "10.1063/1.1469026",
    language = "English",
    volume = "9",
    pages = "2156--2164",
    journal = "Physics of Plasmas",
    issn = "1527-2419",
    publisher = "American Institute of Physics AIP",
    number = "5",

    }

    Mailloux, J, Alper, B, Baranov, Y, Becoulet, A, Cardinali, A, Castaldo, C, Cesario, R, Conway, G, Challis, C, Crisanti, F, de Baar, M, de Vries, P, Ekedahl, A, Erents, K, Gowers, C, Hawkes, N, Hogeweij, G, Imbeaux, F, Joffrin, E, Litaudon, X, Lomas, P, Matthews, G, Mazon, D, Pericoli, V, Prentice, R, Rimini, F, Sarazin, Y, Stratton, B, Tuccillo, A, Tala, T, Zastrow, K-D & Programme, CTTEFDA-JETW 2002, 'Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus)', Physics of Plasmas, vol. 9, no. 5, pp. 2156-2164. https://doi.org/10.1063/1.1469026

    Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus). / Mailloux, J.; Alper, B.; Baranov, Y.; Becoulet, A.; Cardinali, A.; Castaldo, C.; Cesario, R.; Conway, G.; Challis, C.; Crisanti, F.; de Baar, M.; de Vries, P.; Ekedahl, A.; Erents, K.; Gowers, C.; Hawkes, N.; Hogeweij, G.; Imbeaux, F.; Joffrin, E.; Litaudon, X.; Lomas, P.; Matthews, G.; Mazon, D.; Pericoli, V.; Prentice, R.; Rimini, F.; Sarazin, Y.; Stratton, B.; Tuccillo, A.; Tala, Tuomas; Zastrow, K.-D.; Programme, Contributors to the EFDA-JET Work.

    In: Physics of Plasmas, Vol. 9, No. 5, 2002, p. 2156-2164.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus)

    AU - Mailloux, J.

    AU - Alper, B.

    AU - Baranov, Y.

    AU - Becoulet, A.

    AU - Cardinali, A.

    AU - Castaldo, C.

    AU - Cesario, R.

    AU - Conway, G.

    AU - Challis, C.

    AU - Crisanti, F.

    AU - de Baar, M.

    AU - de Vries, P.

    AU - Ekedahl, A.

    AU - Erents, K.

    AU - Gowers, C.

    AU - Hawkes, N.

    AU - Hogeweij, G.

    AU - Imbeaux, F.

    AU - Joffrin, E.

    AU - Litaudon, X.

    AU - Lomas, P.

    AU - Matthews, G.

    AU - Mazon, D.

    AU - Pericoli, V.

    AU - Prentice, R.

    AU - Rimini, F.

    AU - Sarazin, Y.

    AU - Stratton, B.

    AU - Tuccillo, A.

    AU - Tala, Tuomas

    AU - Zastrow, K.-D.

    AU - Programme, Contributors to the EFDA-JET Work

    PY - 2002

    Y1 - 2002

    N2 - In optimized shear plasmas in the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)], safety factor (q) profiles with negative magnetic shear are produced by applying lower hybrid (LH) waves during the plasma current ramp-up phase. These plasmas produce a barrier to the electron energy transport. The radius at which the barrier is located increases with the LH wave power. When heated with high power from ion cyclotron resonance heating and neutral beam injection, they can additionally produce transient internal transport barriers (ITBs) seen on the ion temperature, electron density, and toroidal rotation velocity profiles. Due to recent improvements in coupling, q profile control with LH current drive in ITB plasmas with strong combined heating can be explored. These new experiments have led to ITBs sustained for several seconds by the LH wave. Simulations show that the current driven by the LH waves peaks at the ITB location, indicating that it can act in the region of low magnetic shear.

    AB - In optimized shear plasmas in the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)], safety factor (q) profiles with negative magnetic shear are produced by applying lower hybrid (LH) waves during the plasma current ramp-up phase. These plasmas produce a barrier to the electron energy transport. The radius at which the barrier is located increases with the LH wave power. When heated with high power from ion cyclotron resonance heating and neutral beam injection, they can additionally produce transient internal transport barriers (ITBs) seen on the ion temperature, electron density, and toroidal rotation velocity profiles. Due to recent improvements in coupling, q profile control with LH current drive in ITB plasmas with strong combined heating can be explored. These new experiments have led to ITBs sustained for several seconds by the LH wave. Simulations show that the current driven by the LH waves peaks at the ITB location, indicating that it can act in the region of low magnetic shear.

    KW - plasma toroidal confinement

    KW - plasma transport processes

    KW - plasma hybrid waves

    KW - plasma beam injection heating

    KW - fusion reactor safety

    KW - plasma

    KW - plasma density

    KW - plasma temperature

    KW - electron density

    KW - plasma diagnostics

    KW - plasma simulation

    KW - plasma radiofrequency heating

    U2 - 10.1063/1.1469026

    DO - 10.1063/1.1469026

    M3 - Article

    VL - 9

    SP - 2156

    EP - 2164

    JO - Physics of Plasmas

    JF - Physics of Plasmas

    SN - 1527-2419

    IS - 5

    ER -