Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus)

J. Mailloux, B. Alper, Y. Baranov, A. Becoulet, A. Cardinali, C. Castaldo, R. Cesario, G. Conway, C. Challis, F. Crisanti, M. de Baar, P. de Vries, A. Ekedahl, K. Erents, C. Gowers, N. Hawkes, G. Hogeweij, F. Imbeaux, E. Joffrin, X. Litaudon & 12 others P. Lomas, G. Matthews, D. Mazon, V. Pericoli, R. Prentice, F. Rimini, Y. Sarazin, B. Stratton, A. Tuccillo, Tuomas Tala, K.-D. Zastrow, Contributors to the EFDA-JET Work Programme

Research output: Contribution to journalArticleScientificpeer-review

61 Citations (Scopus)

Abstract

In optimized shear plasmas in the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)], safety factor (q) profiles with negative magnetic shear are produced by applying lower hybrid (LH) waves during the plasma current ramp-up phase. These plasmas produce a barrier to the electron energy transport. The radius at which the barrier is located increases with the LH wave power. When heated with high power from ion cyclotron resonance heating and neutral beam injection, they can additionally produce transient internal transport barriers (ITBs) seen on the ion temperature, electron density, and toroidal rotation velocity profiles. Due to recent improvements in coupling, q profile control with LH current drive in ITB plasmas with strong combined heating can be explored. These new experiments have led to ITBs sustained for several seconds by the LH wave. Simulations show that the current driven by the LH waves peaks at the ITB location, indicating that it can act in the region of low magnetic shear.
Original languageEnglish
Pages (from-to)2156-2164
JournalPhysics of Plasmas
Volume9
Issue number5
DOIs
Publication statusPublished - 2002
MoE publication typeA1 Journal article-refereed

Fingerprint

Joint European Torus
heating
shear
safety factors
beam injection
plasma currents
neutral beams
ion temperature
cyclotron resonance
profiles
ramps
velocity distribution
fusion
electron energy
radii

Keywords

  • plasma toroidal confinement
  • plasma transport processes
  • plasma hybrid waves
  • plasma beam injection heating
  • fusion reactor safety
  • plasma
  • plasma density
  • plasma temperature
  • electron density
  • plasma diagnostics
  • plasma simulation
  • plasma radiofrequency heating

Cite this

Mailloux, J., Alper, B., Baranov, Y., Becoulet, A., Cardinali, A., Castaldo, C., ... Programme, C. T. T. EFDA-JET. W. (2002). Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus). Physics of Plasmas, 9(5), 2156-2164. https://doi.org/10.1063/1.1469026
Mailloux, J. ; Alper, B. ; Baranov, Y. ; Becoulet, A. ; Cardinali, A. ; Castaldo, C. ; Cesario, R. ; Conway, G. ; Challis, C. ; Crisanti, F. ; de Baar, M. ; de Vries, P. ; Ekedahl, A. ; Erents, K. ; Gowers, C. ; Hawkes, N. ; Hogeweij, G. ; Imbeaux, F. ; Joffrin, E. ; Litaudon, X. ; Lomas, P. ; Matthews, G. ; Mazon, D. ; Pericoli, V. ; Prentice, R. ; Rimini, F. ; Sarazin, Y. ; Stratton, B. ; Tuccillo, A. ; Tala, Tuomas ; Zastrow, K.-D. ; Programme, Contributors to the EFDA-JET Work. / Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus). In: Physics of Plasmas. 2002 ; Vol. 9, No. 5. pp. 2156-2164.
@article{d0bf66c0aada4a5384b385369ab7313a,
title = "Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus)",
abstract = "In optimized shear plasmas in the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)], safety factor (q) profiles with negative magnetic shear are produced by applying lower hybrid (LH) waves during the plasma current ramp-up phase. These plasmas produce a barrier to the electron energy transport. The radius at which the barrier is located increases with the LH wave power. When heated with high power from ion cyclotron resonance heating and neutral beam injection, they can additionally produce transient internal transport barriers (ITBs) seen on the ion temperature, electron density, and toroidal rotation velocity profiles. Due to recent improvements in coupling, q profile control with LH current drive in ITB plasmas with strong combined heating can be explored. These new experiments have led to ITBs sustained for several seconds by the LH wave. Simulations show that the current driven by the LH waves peaks at the ITB location, indicating that it can act in the region of low magnetic shear.",
keywords = "plasma toroidal confinement, plasma transport processes, plasma hybrid waves, plasma beam injection heating, fusion reactor safety, plasma, plasma density, plasma temperature, electron density, plasma diagnostics, plasma simulation, plasma radiofrequency heating",
author = "J. Mailloux and B. Alper and Y. Baranov and A. Becoulet and A. Cardinali and C. Castaldo and R. Cesario and G. Conway and C. Challis and F. Crisanti and {de Baar}, M. and {de Vries}, P. and A. Ekedahl and K. Erents and C. Gowers and N. Hawkes and G. Hogeweij and F. Imbeaux and E. Joffrin and X. Litaudon and P. Lomas and G. Matthews and D. Mazon and V. Pericoli and R. Prentice and F. Rimini and Y. Sarazin and B. Stratton and A. Tuccillo and Tuomas Tala and K.-D. Zastrow and Programme, {Contributors to the EFDA-JET Work}",
year = "2002",
doi = "10.1063/1.1469026",
language = "English",
volume = "9",
pages = "2156--2164",
journal = "Physics of Plasmas",
issn = "1527-2419",
publisher = "American Institute of Physics AIP",
number = "5",

}

Mailloux, J, Alper, B, Baranov, Y, Becoulet, A, Cardinali, A, Castaldo, C, Cesario, R, Conway, G, Challis, C, Crisanti, F, de Baar, M, de Vries, P, Ekedahl, A, Erents, K, Gowers, C, Hawkes, N, Hogeweij, G, Imbeaux, F, Joffrin, E, Litaudon, X, Lomas, P, Matthews, G, Mazon, D, Pericoli, V, Prentice, R, Rimini, F, Sarazin, Y, Stratton, B, Tuccillo, A, Tala, T, Zastrow, K-D & Programme, CTTEFDA-JETW 2002, 'Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus)', Physics of Plasmas, vol. 9, no. 5, pp. 2156-2164. https://doi.org/10.1063/1.1469026

Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus). / Mailloux, J.; Alper, B.; Baranov, Y.; Becoulet, A.; Cardinali, A.; Castaldo, C.; Cesario, R.; Conway, G.; Challis, C.; Crisanti, F.; de Baar, M.; de Vries, P.; Ekedahl, A.; Erents, K.; Gowers, C.; Hawkes, N.; Hogeweij, G.; Imbeaux, F.; Joffrin, E.; Litaudon, X.; Lomas, P.; Matthews, G.; Mazon, D.; Pericoli, V.; Prentice, R.; Rimini, F.; Sarazin, Y.; Stratton, B.; Tuccillo, A.; Tala, Tuomas; Zastrow, K.-D.; Programme, Contributors to the EFDA-JET Work.

In: Physics of Plasmas, Vol. 9, No. 5, 2002, p. 2156-2164.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Progress in internal transport barrier plasmas with lower hybrid current drive and heating in JET (Joint European Torus)

AU - Mailloux, J.

AU - Alper, B.

AU - Baranov, Y.

AU - Becoulet, A.

AU - Cardinali, A.

AU - Castaldo, C.

AU - Cesario, R.

AU - Conway, G.

AU - Challis, C.

AU - Crisanti, F.

AU - de Baar, M.

AU - de Vries, P.

AU - Ekedahl, A.

AU - Erents, K.

AU - Gowers, C.

AU - Hawkes, N.

AU - Hogeweij, G.

AU - Imbeaux, F.

AU - Joffrin, E.

AU - Litaudon, X.

AU - Lomas, P.

AU - Matthews, G.

AU - Mazon, D.

AU - Pericoli, V.

AU - Prentice, R.

AU - Rimini, F.

AU - Sarazin, Y.

AU - Stratton, B.

AU - Tuccillo, A.

AU - Tala, Tuomas

AU - Zastrow, K.-D.

AU - Programme, Contributors to the EFDA-JET Work

PY - 2002

Y1 - 2002

N2 - In optimized shear plasmas in the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)], safety factor (q) profiles with negative magnetic shear are produced by applying lower hybrid (LH) waves during the plasma current ramp-up phase. These plasmas produce a barrier to the electron energy transport. The radius at which the barrier is located increases with the LH wave power. When heated with high power from ion cyclotron resonance heating and neutral beam injection, they can additionally produce transient internal transport barriers (ITBs) seen on the ion temperature, electron density, and toroidal rotation velocity profiles. Due to recent improvements in coupling, q profile control with LH current drive in ITB plasmas with strong combined heating can be explored. These new experiments have led to ITBs sustained for several seconds by the LH wave. Simulations show that the current driven by the LH waves peaks at the ITB location, indicating that it can act in the region of low magnetic shear.

AB - In optimized shear plasmas in the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)], safety factor (q) profiles with negative magnetic shear are produced by applying lower hybrid (LH) waves during the plasma current ramp-up phase. These plasmas produce a barrier to the electron energy transport. The radius at which the barrier is located increases with the LH wave power. When heated with high power from ion cyclotron resonance heating and neutral beam injection, they can additionally produce transient internal transport barriers (ITBs) seen on the ion temperature, electron density, and toroidal rotation velocity profiles. Due to recent improvements in coupling, q profile control with LH current drive in ITB plasmas with strong combined heating can be explored. These new experiments have led to ITBs sustained for several seconds by the LH wave. Simulations show that the current driven by the LH waves peaks at the ITB location, indicating that it can act in the region of low magnetic shear.

KW - plasma toroidal confinement

KW - plasma transport processes

KW - plasma hybrid waves

KW - plasma beam injection heating

KW - fusion reactor safety

KW - plasma

KW - plasma density

KW - plasma temperature

KW - electron density

KW - plasma diagnostics

KW - plasma simulation

KW - plasma radiofrequency heating

U2 - 10.1063/1.1469026

DO - 10.1063/1.1469026

M3 - Article

VL - 9

SP - 2156

EP - 2164

JO - Physics of Plasmas

JF - Physics of Plasmas

SN - 1527-2419

IS - 5

ER -