TY - GEN
T1 - Rare earth elements recovery and sulphate removal from phosphogypsum waste waters with sulphate reducing bacteria
AU - Mäkinen, Jarno
AU - Bomberg, Malin
AU - Salo, Marja
AU - Arnold, Mona
AU - Koukkari, Pertti
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Phosphogypsum waste, originating from phosphoric acid production from apatite ores, is well known for its high production rate and possible release of sulphate-rich seepage waters. In addition to negative environmental impacts, phosphogypsum waste heaps are also remarkable secondary sources of rare earth elements (REE); in the phosphoric acid production process a majority of REE, occurring in apatite, are precipitated to the phosphogypsum waste. Therefore, a method treating both sulphate-rich waters and recovering REE from phosphogypsum heaps and seepage waters would offer both economic and environmental benefits. In this ongoing study, seepage waters from a phosphogypsum heap are treated with sulphate reducing bacteria (SRB) and ethanol as a substrate. Sulphate is first reduced to hydrogen sulphide, which is then assumed to precipitate REE as sulphides. The main challenge, low concentration of REE in seepage waters (e.g. 2.87 µg/l La, 5.13 µg/l Ce, 0.67 µg/l Y and 3.32 µg/l Nd), is overcome by utilizing continuous mode, semi-passive and cost effective column apparatus, requiring no agitation and performing both sulphate reduction and REE recovery in a single reactor. The SRB method results in a sulphate reduction rate of 40-80 % (from app. 1400 mg/l to 276-844 mg/l sulphate in the effluent) and efficient REE recovery from seepage water. The concentrate obtained from the column consists of a mixture of anaerobic sludge and precipitated REE, with respective REE concentrations of 202 mg/kg La, 477 mg/kg Ce, 49 mg/kg Y and 295 mg/kg Nd.
AB - Phosphogypsum waste, originating from phosphoric acid production from apatite ores, is well known for its high production rate and possible release of sulphate-rich seepage waters. In addition to negative environmental impacts, phosphogypsum waste heaps are also remarkable secondary sources of rare earth elements (REE); in the phosphoric acid production process a majority of REE, occurring in apatite, are precipitated to the phosphogypsum waste. Therefore, a method treating both sulphate-rich waters and recovering REE from phosphogypsum heaps and seepage waters would offer both economic and environmental benefits. In this ongoing study, seepage waters from a phosphogypsum heap are treated with sulphate reducing bacteria (SRB) and ethanol as a substrate. Sulphate is first reduced to hydrogen sulphide, which is then assumed to precipitate REE as sulphides. The main challenge, low concentration of REE in seepage waters (e.g. 2.87 µg/l La, 5.13 µg/l Ce, 0.67 µg/l Y and 3.32 µg/l Nd), is overcome by utilizing continuous mode, semi-passive and cost effective column apparatus, requiring no agitation and performing both sulphate reduction and REE recovery in a single reactor. The SRB method results in a sulphate reduction rate of 40-80 % (from app. 1400 mg/l to 276-844 mg/l sulphate in the effluent) and efficient REE recovery from seepage water. The concentrate obtained from the column consists of a mixture of anaerobic sludge and precipitated REE, with respective REE concentrations of 202 mg/kg La, 477 mg/kg Ce, 49 mg/kg Y and 295 mg/kg Nd.
KW - apatite
KW - phosphogypsum
KW - rare earth element
KW - sulphate
KW - sulphate reducing bacteria
UR - http://www.scopus.com/inward/record.url?scp=85028980767&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/SSP.262.573
DO - 10.4028/www.scientific.net/SSP.262.573
M3 - Conference article in proceedings
SN - 978-3-0357-1180-6
T3 - Solid State Phenomena
SP - 573
EP - 576
BT - 22nd International Biohydrometallurgy Symposium
A2 - Hedrich, Sabrina
A2 - Schippers, Axel
A2 - Rubberdt, Kathrin
A2 - Glombitza, Franz
A2 - Sand, Wolfgang
A2 - Sand, Wolfgang
A2 - Veliz, Mario Vera
A2 - Willscher, Sabine
PB - Trans Tech Publications
T2 - 22nd International Biohydrometallurgy Symposium
Y2 - 24 September 2017 through 27 September 2017
ER -