Reinforcing Folding Box Board Ply Stock with Refined Pulp and Its Effect on Dewatering Potential

Antti I. Koponen, Juan Cecchini, Merja Selenius, Ari Jäsberg

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The folding boxboard (FBB) filler ply typically contains a significant amount of mechanical pulp such as bleached thermomechanical pulp (BTMP), bleached chemi-thermomechanical pulp (BCTMP), and chemi-thermomechanical pulp (CTMP), etc. It is usually reinforced with either refined broke from the same paper machine line and converting process or by utilizing traditional bleached kraft pulp (BKP). In response to the drive for improved/increased ply bond (to avoid undesired delamination), increased bulk, reduced basis weight, and minimized energy consumption, papermakers have experimented with various options and strategies. In between the common approaches, choices have been made between reducing the refining of the mechanical pulp, increasing the broke refining (more frequently practiced on the production scale), or increasing the BKP refining (a potentially superior choice). This study focused on a simplified approach to assess the impact of three reinforcement pulps with different refining levels on the dewatering of the filler ply. The reinforcement pulp was added to the core stock for the FBB filler ply — a mechanical pulp, BCTMP, with a drainability of 25 °SR. The proportions of the reinforcement pulp, hardwood bleached kraft pulp (HWBKP), were 20% of 30-35 °SR, 10% of HWBKP 50-55 °SR, and 5% of HWBKP 70-75 °SR. The intention behind using varying percentages of reinforcement pulp was to attain a controlled internal bond while enhancing bulk through increased mechanical pulp content. The dewatering potential of the stock mixtures was assessed at three vacuum levels — 4, 10, and 25 kPa — that can be found in progressive stages within production- scale forming sections. Our goal was to find an optimal reinforcement strategy for filler ply that would minimize the use of the reinforcement pulp, give better strength, retain bulk, and lower basis weight. The success of this strategy was verified with an actual FBB machine.
Original languageEnglish
Pages (from-to)111-123
Number of pages13
JournalTappi Journal
Volume24
Issue number2
DOIs
Publication statusPublished - 2025
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Reinforcing Folding Box Board Ply Stock with Refined Pulp and Its Effect on Dewatering Potential'. Together they form a unique fingerprint.

Cite this