Abstract
Fast pyrolysis bio-oils are completely different from petroleum fuels and other bio-fuels available in the market, as regards both to their physical properties and chemical composition. When the unusual properties of these bio-oils are carefully taken into account in system and burner design, their combustion without a pilot flame or support fuel is possible on an industrial scale. The aim of the paper is to review the work done on combustion of fast pyrolysis bio-oils and highlight the latest and most important findings of its combustion from laboratory fundamentals to industrial scale. The main focus of the paper is on the bio-oil burner applications.In recent industrial scale bio-oil combustion tests, bio-oil has been found to be technically suitable for replacing heavy fuel oil in district heating. In addition, it has also been found out that limited possibilities for further lowering particulate emissions exist, since the majority of the particulates are typically incombustible matter. Curves for NO. x-emissions of fast pyrolysis bio-oil combustion for air-assisted atomization burners are presented in the paper.Current burner designs are quite sensitive to the changes in the quality of the bio-oil, which may cause problems in ignition, flame detection and flame stabilization. Therefore, in order to be able to create reliable bio-oil combustion systems that operate at high efficiency, bio-oil grades should be standardized for combustion applications. Careful quality control, combined with standards and specifications, all the way from feedstock harvesting through production to end-use is recommended in order to make sure that emission targets and limits in combustion applications are achieved. Also the cost-effectiveness of the total package is extremely important.
Original language | English |
---|---|
Pages (from-to) | 178-190 |
Number of pages | 13 |
Journal | Applied Energy |
Volume | 116 |
DOIs | |
Publication status | Published - 1 Mar 2014 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Burner applications
- Combustion
- Emissions
- Fast pyrolysis
- Lignocellulosic biomass
- Pyrolysis oil