Role of poloidal E × B drift in divertor heat transport in DIII-D

A. E. Jaervinen (Corresponding Author), S. L. Allen, A. W. Leonard, A. G. McLean, A. L. Moser, T. D. Rognlien, C. M. Samuell

Research output: Contribution to journalArticleScientificpeer-review

13 Citations (Scopus)


Simulations for DIII-D high confinement mode plasmas with the multifluid code UEDGE show a strong role of poloidal E × B drifts on divertor heat transport, challenging the paradigm of conduction-limited scrape-off layer (SOL) transport. While simulations with reduced drift magnitude are well aligned with the assumption that electron heat conduction dominates the SOL heat transport, simulations with drifts predict that the poloidal convective E × B heat transport dominates over electron heat conduction in both attached and detached conditions. As poloidal E × B flow propagates across magnetic field lines, poloidal transport with shallow magnetic pitch angles can reach values that are of the same order as would be provided by sonic flows parallel to the field lines. These flows can lead to strong convection-dominated divertor heat transport, increasing the poloidal volume of radiative power front, consistent with previous measurements at DIII-D. Due to these convective flows, the Lengyel integral approach, assuming zero convective fraction, is expected to provide a pessimistic estimate for the radiative capability of impurities in the divertor. For the DIII-D simulations shown here, the Lengyel integral approach underestimates the radiated power by a factor of 6, indicating that, for reliable DIII-D divertor power exhaust predictions, full two-dimensional (2D) calculations, including drifts, would be necessary.

Original languageEnglish
Article numbere201900111
JournalContributions to Plasma Physics
Issue number5-6
Publication statusPublished - 1 Jun 2020
MoE publication typeA1 Journal article-refereed


  • conduction
  • convection
  • divertor
  • drifts
  • heat transport
  • radiation


Dive into the research topics of 'Role of poloidal E × B drift in divertor heat transport in DIII-D'. Together they form a unique fingerprint.

Cite this