Abstract
We present a high-volume fabrication technique for making polymer lab-on-a-chip devices. Microfluidic separation devices, relying on pinched flow fraction, are roll-to-roll fabricated in a cellulose acetate (CA) film at a volume of 360 devices h−1 for a cost of approximately 0.5 euro/device. The manufacturing process consists of two steps: (i) roll-to-roll thermal nanoimprint for patterning the microchannels into a CA film and (ii) roll-to-roll lamination for bonding another CA film onto the imprinted film to seal the microchannels. Reverse gravure coating is used to apply an adhesive polymer onto the CA lid film before roll-to-roll lamination in order to increase the bonding strength. The fabricated devices are compared with planar imprinted devices with regard to the cross-sectional profile of the imprinted channels and their separation functionality. The separation functionality is characterized using fluorescent polystyrene microspheres with diameters ranging from 0.5 to 5 µm.
Original language | English |
---|---|
Article number | 035006 |
Number of pages | 6 |
Journal | Journal of Micromechanics and Microengineering |
Volume | 21 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2011 |
MoE publication type | A1 Journal article-refereed |