TY - JOUR
T1 - Saccharomyces cerevisiae engineered to produce D-xylonate
AU - Toivari, Mervi H.
AU - Ruohonen, Laura
AU - Richard, Peter
AU - Penttilä, Merja
AU - Wiebe, Marilyn G.
N1 - CA2: TK402
CA2: TK400
ISI: BIOTECHNOLOGY & APPLIED MICROBIOLOGY
PY - 2010/10/1
Y1 - 2010/10/1
N2 - Saccharomyces cerevisiae was engineered to produce D-xylonate by introducing the Trichoderma reesei xyd1 gene, encoding a D-xylose dehydrogenase. D-xylonate was not toxic to S. cerevisiae, and the cells were able to export D-xylonate produced in the cytoplasm to the supernatant. Up to 3.8 g of D-xylonate per litre, at rates of 25-36 mg of D-xylonate per litre per hour, was produced. Up to 4.8 g of xylitol per litre was also produced. The yield of D-xylonate from D-xylose was approximately 0.4 g of D-xylonate per gramme of D-xylose consumed. Deletion of the aldose reductase encoding gene GRE3 in S. cerevisiae strains expressing xyd1 reduced xylitol production by 67%, increasing the yield of D-xylonate from D-xylose. However, D-xylose uptake was reduced compared to strains containing GRE3, and the total amount of D-xylonate produced was reduced. To determine whether the co-factor NADP+ was limiting for D-xylonate production the Escherichia coli transhydrogenase encoded by udhA, the Bacillus subtilis glyceraldehyde 3-phosphate dehydrogenase encoded by gapB or the S. cerevisiae glutamate dehydrogenase encoded by GDH2 was co-expressed with xyd1 in the parent and GRE3 deficient strains. Although each of these enzymes enhanced NADPH consumption on D-glucose, they did not enhance D-xylonate production, suggesting that NADP+ was not the main limitation in the current D-xylonate producing strains.
AB - Saccharomyces cerevisiae was engineered to produce D-xylonate by introducing the Trichoderma reesei xyd1 gene, encoding a D-xylose dehydrogenase. D-xylonate was not toxic to S. cerevisiae, and the cells were able to export D-xylonate produced in the cytoplasm to the supernatant. Up to 3.8 g of D-xylonate per litre, at rates of 25-36 mg of D-xylonate per litre per hour, was produced. Up to 4.8 g of xylitol per litre was also produced. The yield of D-xylonate from D-xylose was approximately 0.4 g of D-xylonate per gramme of D-xylose consumed. Deletion of the aldose reductase encoding gene GRE3 in S. cerevisiae strains expressing xyd1 reduced xylitol production by 67%, increasing the yield of D-xylonate from D-xylose. However, D-xylose uptake was reduced compared to strains containing GRE3, and the total amount of D-xylonate produced was reduced. To determine whether the co-factor NADP+ was limiting for D-xylonate production the Escherichia coli transhydrogenase encoded by udhA, the Bacillus subtilis glyceraldehyde 3-phosphate dehydrogenase encoded by gapB or the S. cerevisiae glutamate dehydrogenase encoded by GDH2 was co-expressed with xyd1 in the parent and GRE3 deficient strains. Although each of these enzymes enhanced NADPH consumption on D-glucose, they did not enhance D-xylonate production, suggesting that NADP+ was not the main limitation in the current D-xylonate producing strains.
KW - D-xylonic acid
KW - D-xylose
KW - Phosphoglucose isomerase
KW - Redox balance
KW - S. cerevisiae
UR - http://www.scopus.com/inward/record.url?scp=78149357431&partnerID=8YFLogxK
U2 - 10.1007/s00253-010-2787-9
DO - 10.1007/s00253-010-2787-9
M3 - Article
C2 - 20680264
AN - SCOPUS:78149357431
VL - 88
SP - 751
EP - 760
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
SN - 0175-7598
IS - 3
ER -