TY - JOUR
T1 - Secretome analysis of the basidiomycete Phanerochaete chrysosporium grown on ammonia-treated lignocellulosic biomass from birch wood
AU - Sakuragi, Kiyoshi
AU - Hori, Chiaki
AU - Igarashi, Kiyohiko
AU - Samejima, Masahiro
N1 - Funding Information:
Reiko Hayashi, and Aiko Akiyama for analysis of the two-dimensional electrophoresis and chemical composition data. This research was supported by: a Grant-in-Aid for Scientific Research (no. 23248025 and 16H04949 to M.S.) from the Japan Society for the Promotion of Science (JSPS). K.I. thanks the Finnish Funding Agency for Innovation (TEKES) for the support of the Finland Distinguished Professor (FiDiPro) Program “Advanced approaches for enzymatic biomass utilisation and modification (BioAD)”.
Publisher Copyright:
© 2018, The Author(s).
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Ammonia pretreatment is a promising technique for enhancing enzymatic saccharification of lignocellulosic biomass. However, an enzymatic cocktail suitable for the breakdown of pretreated biomass samples is still being developed. The basidiomycete Phanerochaete chrysosporium is a well-studied fungus with regard to bioconversion of lignocellulosic biomass. In the present work, we analyzed proteins secreted by P. chrysosporium grown on untreated and ammonia-treated birch wood meal. Fungal growth, xylanase activity, and extracellular protease activity increased in the media containing the ammonia-treated biomass; however, cellulase production decreased compared to that observed in the untreated biomass. Secreted extracellular proteins were separated by two-dimensional electrophoresis and identified by liquid chromatography ion–trap mass spectrometry. Fifty-five spots corresponding to secreted proteins were chosen for further analysis. In the culture with ammonia-treated biomass, the relative concentration of a xylanase belonging to glycoside hydrolase (GH) family 11 increased, while acetyl xylan esterases belonging to carbohydrate esterase family 1 decreased. Moreover, GH family 10 xylanases were promoted proteolysis in the culture of ammonia-treated biomass, leading to the loss of family 1 carbohydrate-binding modules. These results indicated that P. chrysosporium produced enzymes related to the recognition of structural changes on xylan with de-acetylation and introduction of nitrogen by ammonia pretreatment of birch wood meal.
AB - Ammonia pretreatment is a promising technique for enhancing enzymatic saccharification of lignocellulosic biomass. However, an enzymatic cocktail suitable for the breakdown of pretreated biomass samples is still being developed. The basidiomycete Phanerochaete chrysosporium is a well-studied fungus with regard to bioconversion of lignocellulosic biomass. In the present work, we analyzed proteins secreted by P. chrysosporium grown on untreated and ammonia-treated birch wood meal. Fungal growth, xylanase activity, and extracellular protease activity increased in the media containing the ammonia-treated biomass; however, cellulase production decreased compared to that observed in the untreated biomass. Secreted extracellular proteins were separated by two-dimensional electrophoresis and identified by liquid chromatography ion–trap mass spectrometry. Fifty-five spots corresponding to secreted proteins were chosen for further analysis. In the culture with ammonia-treated biomass, the relative concentration of a xylanase belonging to glycoside hydrolase (GH) family 11 increased, while acetyl xylan esterases belonging to carbohydrate esterase family 1 decreased. Moreover, GH family 10 xylanases were promoted proteolysis in the culture of ammonia-treated biomass, leading to the loss of family 1 carbohydrate-binding modules. These results indicated that P. chrysosporium produced enzymes related to the recognition of structural changes on xylan with de-acetylation and introduction of nitrogen by ammonia pretreatment of birch wood meal.
KW - Ammonia pretreatment
KW - Birch wood
KW - Lignocellulosic biomass
KW - Phanerochaete chrysosporium
KW - Secretome analysis
UR - http://www.scopus.com/inward/record.url?scp=85055969324&partnerID=8YFLogxK
U2 - 10.1007/s10086-018-1770-4
DO - 10.1007/s10086-018-1770-4
M3 - Article
AN - SCOPUS:85055969324
SN - 1435-0211
VL - 64
SP - 845
EP - 853
JO - Journal of Wood Science
JF - Journal of Wood Science
IS - 6
ER -