Silicon Membranes for Nanophononics

A. Varpula, A. Shchepetov, K. Grigoras, J. Hassel, Mika Prunnila, J. Ahopelto (Corresponding author)

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingsScientificpeer-review


The highly reduced thermal conductivity arising from confinement of acoustic phonons and enhanced phonon scattering in ultra-thin freestanding silicon membranes enables fabrication of sensitive thermal thermoelectric detectors. The devices show very low noise equivalent power of 13 pW/ Hz 1/2 and relatively fast operation. By optimizing the structure and electrical properties of the detector, the operation can approach the temperature fluctuation limit.

Original languageEnglish
Title of host publication18th International Conference on Nanotechnology, NANO 2018
PublisherIEEE Institute of Electrical and Electronic Engineers
Number of pages2
ISBN (Electronic)978-1-5386-5336-4
ISBN (Print)978-1-5386-5337-1
Publication statusPublished - 2 Jul 2018
MoE publication typeA4 Article in a conference publication
Event18th International Conference on Nanotechnology, NANO 2018 - Cork, Ireland
Duration: 23 Jul 201826 Jul 2018
Conference number: 18

Publication series

SeriesProceedings of the IEEE Conference on Nanotechnology


Conference18th International Conference on Nanotechnology, NANO 2018
Abbreviated titleNANO 2018


  • silicon
  • biomembranes
  • phonons
  • detectors
  • thermal conductivity
  • conductivity
  • nanoscale devices
  • OtaNano


Dive into the research topics of 'Silicon Membranes for Nanophononics'. Together they form a unique fingerprint.

Cite this