Simulation-based approach for studying the balancing of local smart grids with electric vehicle batteries

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid- and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV batteries. Based on the evaluation results, it is estimated that the simulation-based approach can provide an essential, safe, and cost-efficient method for the evaluation of complex, critical cyber-physical systems, such as smart grids.
Original languageEnglish
Pages (from-to)81-108
JournalSystems
Volume3
Issue number3
DOIs
Publication statusPublished - 2015
MoE publication typeA1 Journal article-refereed

Fingerprint

Electric vehicles
Costs
Carbon dioxide
Pollution
Battery electric vehicles
Network protocols
Monitoring
Cyber Physical System

Keywords

  • complex systems
  • systems engineering
  • simulation systems
  • smart grids
  • electric vehicles
  • control systems

Cite this

@article{d227cdb0daed4e51b41f08d820fd56ac,
title = "Simulation-based approach for studying the balancing of local smart grids with electric vehicle batteries",
abstract = "Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid- and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV batteries. Based on the evaluation results, it is estimated that the simulation-based approach can provide an essential, safe, and cost-efficient method for the evaluation of complex, critical cyber-physical systems, such as smart grids.",
keywords = "complex systems, systems engineering, simulation systems, smart grids, electric vehicles, control systems",
author = "Juhani Latvakoski and Kari M{\"a}ki and Jussi Ronkainen and Jukka Julku and Jani Koivusaari",
year = "2015",
doi = "10.3390/systems3030081",
language = "English",
volume = "3",
pages = "81--108",
journal = "Systems",
issn = "2079-8954",
number = "3",

}

TY - JOUR

T1 - Simulation-based approach for studying the balancing of local smart grids with electric vehicle batteries

AU - Latvakoski, Juhani

AU - Mäki, Kari

AU - Ronkainen, Jussi

AU - Julku, Jukka

AU - Koivusaari, Jani

PY - 2015

Y1 - 2015

N2 - Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid- and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV batteries. Based on the evaluation results, it is estimated that the simulation-based approach can provide an essential, safe, and cost-efficient method for the evaluation of complex, critical cyber-physical systems, such as smart grids.

AB - Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid- and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV batteries. Based on the evaluation results, it is estimated that the simulation-based approach can provide an essential, safe, and cost-efficient method for the evaluation of complex, critical cyber-physical systems, such as smart grids.

KW - complex systems

KW - systems engineering

KW - simulation systems

KW - smart grids

KW - electric vehicles

KW - control systems

U2 - 10.3390/systems3030081

DO - 10.3390/systems3030081

M3 - Article

VL - 3

SP - 81

EP - 108

JO - Systems

JF - Systems

SN - 2079-8954

IS - 3

ER -