Simulation-based approach for studying the balancing of local smart grids with electric vehicle batteries

    Research output: Contribution to journalArticleScientificpeer-review

    Abstract

    Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid- and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV batteries. Based on the evaluation results, it is estimated that the simulation-based approach can provide an essential, safe, and cost-efficient method for the evaluation of complex, critical cyber-physical systems, such as smart grids.
    Original languageEnglish
    Pages (from-to)81-108
    JournalSystems
    Volume3
    Issue number3
    DOIs
    Publication statusPublished - 2015
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    Electric vehicles
    Costs
    Carbon dioxide
    Pollution
    Battery electric vehicles
    Network protocols
    Monitoring
    Cyber Physical System

    Keywords

    • complex systems
    • systems engineering
    • simulation systems
    • smart grids
    • electric vehicles
    • control systems

    Cite this

    @article{d227cdb0daed4e51b41f08d820fd56ac,
    title = "Simulation-based approach for studying the balancing of local smart grids with electric vehicle batteries",
    abstract = "Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid- and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV batteries. Based on the evaluation results, it is estimated that the simulation-based approach can provide an essential, safe, and cost-efficient method for the evaluation of complex, critical cyber-physical systems, such as smart grids.",
    keywords = "complex systems, systems engineering, simulation systems, smart grids, electric vehicles, control systems",
    author = "Juhani Latvakoski and Kari M{\"a}ki and Jussi Ronkainen and Jukka Julku and Jani Koivusaari",
    year = "2015",
    doi = "10.3390/systems3030081",
    language = "English",
    volume = "3",
    pages = "81--108",
    journal = "Systems",
    issn = "2079-8954",
    publisher = "MDPI",
    number = "3",

    }

    TY - JOUR

    T1 - Simulation-based approach for studying the balancing of local smart grids with electric vehicle batteries

    AU - Latvakoski, Juhani

    AU - Mäki, Kari

    AU - Ronkainen, Jussi

    AU - Julku, Jukka

    AU - Koivusaari, Jani

    PY - 2015

    Y1 - 2015

    N2 - Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid- and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV batteries. Based on the evaluation results, it is estimated that the simulation-based approach can provide an essential, safe, and cost-efficient method for the evaluation of complex, critical cyber-physical systems, such as smart grids.

    AB - Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid- and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV batteries. Based on the evaluation results, it is estimated that the simulation-based approach can provide an essential, safe, and cost-efficient method for the evaluation of complex, critical cyber-physical systems, such as smart grids.

    KW - complex systems

    KW - systems engineering

    KW - simulation systems

    KW - smart grids

    KW - electric vehicles

    KW - control systems

    U2 - 10.3390/systems3030081

    DO - 10.3390/systems3030081

    M3 - Article

    VL - 3

    SP - 81

    EP - 108

    JO - Systems

    JF - Systems

    SN - 2079-8954

    IS - 3

    ER -