Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation

L. Roschier, J. Penttilä, M. Martin, Unto Tapper, C. Journet, Esko Kauppinen, P. Hakonen, M. Paalanen

    Research output: Contribution to journalArticleScientificpeer-review

    94 Citations (Scopus)

    Abstract

    We positioned semiconducting multiwalled carbon nanotube, using an atomic force microscope, between two gold electrodes at SiO2 surface. Transport measurements exhibit single-electron effects with a charging energy of 24 K. Using the Coulomb staircase model, the capacitances and resistances between the tube and the electrodes can be characterized in detail.
    Original languageEnglish
    Pages (from-to)728-730
    Number of pages3
    JournalApplied Physics Letters
    Volume75
    Issue number5
    DOIs
    Publication statusPublished - 1999
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    single electron transistors
    manipulators
    carbon nanotubes
    scanning
    electrodes
    stairways
    probes
    charging
    capacitance
    microscopes
    gold
    tubes
    electrons
    energy

    Keywords

    • nanotubes

    Cite this

    Roschier, L., Penttilä, J., Martin, M., Tapper, U., Journet, C., Kauppinen, E., ... Paalanen, M. (1999). Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. Applied Physics Letters, 75(5), 728-730. https://doi.org/10.1063/1.124495
    Roschier, L. ; Penttilä, J. ; Martin, M. ; Tapper, Unto ; Journet, C. ; Kauppinen, Esko ; Hakonen, P. ; Paalanen, M. / Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. In: Applied Physics Letters. 1999 ; Vol. 75, No. 5. pp. 728-730.
    @article{b46305eaf2f84cbc8caa681944aee671,
    title = "Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation",
    abstract = "We positioned semiconducting multiwalled carbon nanotube, using an atomic force microscope, between two gold electrodes at SiO2 surface. Transport measurements exhibit single-electron effects with a charging energy of 24 K. Using the Coulomb staircase model, the capacitances and resistances between the tube and the electrodes can be characterized in detail.",
    keywords = "nanotubes",
    author = "L. Roschier and J. Penttil{\"a} and M. Martin and Unto Tapper and C. Journet and Esko Kauppinen and P. Hakonen and M. Paalanen",
    year = "1999",
    doi = "10.1063/1.124495",
    language = "English",
    volume = "75",
    pages = "728--730",
    journal = "Applied Physics Letters",
    issn = "0003-6951",
    number = "5",

    }

    Roschier, L, Penttilä, J, Martin, M, Tapper, U, Journet, C, Kauppinen, E, Hakonen, P & Paalanen, M 1999, 'Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation', Applied Physics Letters, vol. 75, no. 5, pp. 728-730. https://doi.org/10.1063/1.124495

    Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. / Roschier, L.; Penttilä, J.; Martin, M.; Tapper, Unto; Journet, C.; Kauppinen, Esko; Hakonen, P.; Paalanen, M.

    In: Applied Physics Letters, Vol. 75, No. 5, 1999, p. 728-730.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation

    AU - Roschier, L.

    AU - Penttilä, J.

    AU - Martin, M.

    AU - Tapper, Unto

    AU - Journet, C.

    AU - Kauppinen, Esko

    AU - Hakonen, P.

    AU - Paalanen, M.

    PY - 1999

    Y1 - 1999

    N2 - We positioned semiconducting multiwalled carbon nanotube, using an atomic force microscope, between two gold electrodes at SiO2 surface. Transport measurements exhibit single-electron effects with a charging energy of 24 K. Using the Coulomb staircase model, the capacitances and resistances between the tube and the electrodes can be characterized in detail.

    AB - We positioned semiconducting multiwalled carbon nanotube, using an atomic force microscope, between two gold electrodes at SiO2 surface. Transport measurements exhibit single-electron effects with a charging energy of 24 K. Using the Coulomb staircase model, the capacitances and resistances between the tube and the electrodes can be characterized in detail.

    KW - nanotubes

    U2 - 10.1063/1.124495

    DO - 10.1063/1.124495

    M3 - Article

    VL - 75

    SP - 728

    EP - 730

    JO - Applied Physics Letters

    JF - Applied Physics Letters

    SN - 0003-6951

    IS - 5

    ER -