Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation

L. Roschier, J. Penttilä, M. Martin, Unto Tapper, C. Journet, Esko Kauppinen, P. Hakonen, M. Paalanen

Research output: Contribution to journalArticleScientificpeer-review

93 Citations (Scopus)

Abstract

We positioned semiconducting multiwalled carbon nanotube, using an atomic force microscope, between two gold electrodes at SiO2 surface. Transport measurements exhibit single-electron effects with a charging energy of 24 K. Using the Coulomb staircase model, the capacitances and resistances between the tube and the electrodes can be characterized in detail.
Original languageEnglish
Pages (from-to)728-730
Number of pages3
JournalApplied Physics Letters
Volume75
Issue number5
DOIs
Publication statusPublished - 1999
MoE publication typeA1 Journal article-refereed

Fingerprint

single electron transistors
manipulators
carbon nanotubes
scanning
electrodes
stairways
probes
charging
capacitance
microscopes
gold
tubes
electrons
energy

Keywords

  • nanotubes

Cite this

Roschier, L., Penttilä, J., Martin, M., Tapper, U., Journet, C., Kauppinen, E., ... Paalanen, M. (1999). Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. Applied Physics Letters, 75(5), 728-730. https://doi.org/10.1063/1.124495
Roschier, L. ; Penttilä, J. ; Martin, M. ; Tapper, Unto ; Journet, C. ; Kauppinen, Esko ; Hakonen, P. ; Paalanen, M. / Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. In: Applied Physics Letters. 1999 ; Vol. 75, No. 5. pp. 728-730.
@article{b46305eaf2f84cbc8caa681944aee671,
title = "Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation",
abstract = "We positioned semiconducting multiwalled carbon nanotube, using an atomic force microscope, between two gold electrodes at SiO2 surface. Transport measurements exhibit single-electron effects with a charging energy of 24 K. Using the Coulomb staircase model, the capacitances and resistances between the tube and the electrodes can be characterized in detail.",
keywords = "nanotubes",
author = "L. Roschier and J. Penttil{\"a} and M. Martin and Unto Tapper and C. Journet and Esko Kauppinen and P. Hakonen and M. Paalanen",
year = "1999",
doi = "10.1063/1.124495",
language = "English",
volume = "75",
pages = "728--730",
journal = "Applied Physics Letters",
issn = "0003-6951",
number = "5",

}

Roschier, L, Penttilä, J, Martin, M, Tapper, U, Journet, C, Kauppinen, E, Hakonen, P & Paalanen, M 1999, 'Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation', Applied Physics Letters, vol. 75, no. 5, pp. 728-730. https://doi.org/10.1063/1.124495

Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. / Roschier, L.; Penttilä, J.; Martin, M.; Tapper, Unto; Journet, C.; Kauppinen, Esko; Hakonen, P.; Paalanen, M.

In: Applied Physics Letters, Vol. 75, No. 5, 1999, p. 728-730.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Single electron transistor made of multiwalled carbon nanotube using scanning probe manipulation

AU - Roschier, L.

AU - Penttilä, J.

AU - Martin, M.

AU - Tapper, Unto

AU - Journet, C.

AU - Kauppinen, Esko

AU - Hakonen, P.

AU - Paalanen, M.

PY - 1999

Y1 - 1999

N2 - We positioned semiconducting multiwalled carbon nanotube, using an atomic force microscope, between two gold electrodes at SiO2 surface. Transport measurements exhibit single-electron effects with a charging energy of 24 K. Using the Coulomb staircase model, the capacitances and resistances between the tube and the electrodes can be characterized in detail.

AB - We positioned semiconducting multiwalled carbon nanotube, using an atomic force microscope, between two gold electrodes at SiO2 surface. Transport measurements exhibit single-electron effects with a charging energy of 24 K. Using the Coulomb staircase model, the capacitances and resistances between the tube and the electrodes can be characterized in detail.

KW - nanotubes

U2 - 10.1063/1.124495

DO - 10.1063/1.124495

M3 - Article

VL - 75

SP - 728

EP - 730

JO - Applied Physics Letters

JF - Applied Physics Letters

SN - 0003-6951

IS - 5

ER -