Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning

Viktor Dremin, Zbignevs Marcinkevics, Evgeny Zherebtsov, Alexey Popov, Andris Grabovskis, Hedviga Kronberga, Kristine Geldnere, Alexander Doronin, Igor Meglinski, Alexander Bykov

Research output: Contribution to journalArticleScientificpeer-review

65 Citations (Scopus)


Aging and diabetes lead to protein glycation and cause dysfunction of collagen-containing tissues. The accompanying structural and functional changes of collagen significantly contribute to the development of various pathological malformations affecting the skin, blood vessels, and nerves, causing a number of complications, increasing disability risks and threat to life. In fact, no methods of non-invasive assessment of glycation and associated metabolic processes in biotissues or prediction of possible skin complications, e.g., ulcers, currently exist for endocrinologists and clinical diagnosis. In this publication, utilizing emerging photonics-based technology, innovative solutions in machine learning, and definitive physiological characteristics, we introduce a diagnostic approach capable of evaluating the skin complications of diabetes mellitus at the very earlier stage. The results of the feasibility studies, as well as the actual tests on patients with diabetes and healthy volunteers, clearly show the ability of the approach to differentiate diabetic and control groups. Furthermore, the developed in-house polarization-based hyperspectral imaging technique accomplished with the implementation of the artificial neural network provides new horizons in the study and diagnosis of age-related diseases.

Original languageEnglish
Pages (from-to)1207-1216
Number of pages10
JournalIEEE Transactions on Medical Imaging
Issue number4
Publication statusPublished - Apr 2021
MoE publication typeA1 Journal article-refereed


  • diabetes mellitus
  • Hyperspectral imaging
  • polarization
  • skin complications


Dive into the research topics of 'Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning'. Together they form a unique fingerprint.

Cite this