Solvation of carbohydrates in five choline chloride-based deep eutectic solvents and the implication for cellulose solubility

Riina Häkkinen, Andrew Abbott (Corresponding Author)

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Most organic solvents cannot dissolve carbohydrates due to the lack of hydrogen bonding ability of the solvent. The components of deep eutectic solvents (DESs) are held together with strong hydrogen bonds, which are capable of forming favourable interactions with carbohydrates. In this paper, we study the solute-solvent interactions of glucose, sucrose, erythritol, cellobiose, starch and cellulose in five different choline chloride-based DESs. The hydrogen bond donors used were urea, oxalic acid, ethylene glycol, glycerol, and 1,5-pentanediol. Molecular weight of starch and cellulose was determined by size exclusion chromatography, and the degree of polymerisation was noticed to influence the solubility. The enthalpy of hydrogen bond formation of the DESs was quantified by differential scanning calorimetry, and found to correlate well with the solubilities of the mono and di-saccharides. No correlation was found between void size of DESs and carbohydrate solubility, whereas high viscosity of the DESs restricted the solubility. In general, carbohydrates showed good solubilities in the studied DESs, and some similarities were observed between aqueous solutions and ionic liquids. Ethaline showed the best performance as it had lowest viscosity, and no degradation of the carbohydrate occurred. The intermolecular interactions between glucose and Ethaline molecules were investigated by spectroscopic techniques, including 1H NMR and 2D {1H-1H}-NOESY and {1H-19F}-HOESY. Results showed that the hydrogen bond acceptor ability of the choline anion was mainly responsible for the dissolution of the carbohydrate. The solubility of cellulose in ionic liquids and DESs is discussed in terms of the thermodynamics of solvation, being concluded that the entropy change of solvation was the driving force for cellulose solubility in highly ordered ionic liquids. The lower order of DESs could not enable sufficient entropy gain of the solvent resulting lower solubilisation.

Original languageEnglish
Pages (from-to)4673-4682
Number of pages10
JournalGreen Chemistry
Volume21
Issue number17
DOIs
Publication statusPublished - 5 Aug 2019
MoE publication typeA1 Journal article-refereed

Fingerprint

Solvation
Carbohydrates
Choline
Cellulose
Eutectics
cellulose
carbohydrate
solubility
Solubility
chloride
Hydrogen bonds
Ionic Liquids
hydrogen
Ionic liquids
Starch
starch
entropy
Glucose
glucose
Entropy

Cite this

@article{904534db483140b2b4f8ee47d675dadb,
title = "Solvation of carbohydrates in five choline chloride-based deep eutectic solvents and the implication for cellulose solubility",
abstract = "Most organic solvents cannot dissolve carbohydrates due to the lack of hydrogen bonding ability of the solvent. The components of deep eutectic solvents (DESs) are held together with strong hydrogen bonds, which are capable of forming favourable interactions with carbohydrates. In this paper, we study the solute-solvent interactions of glucose, sucrose, erythritol, cellobiose, starch and cellulose in five different choline chloride-based DESs. The hydrogen bond donors used were urea, oxalic acid, ethylene glycol, glycerol, and 1,5-pentanediol. Molecular weight of starch and cellulose was determined by size exclusion chromatography, and the degree of polymerisation was noticed to influence the solubility. The enthalpy of hydrogen bond formation of the DESs was quantified by differential scanning calorimetry, and found to correlate well with the solubilities of the mono and di-saccharides. No correlation was found between void size of DESs and carbohydrate solubility, whereas high viscosity of the DESs restricted the solubility. In general, carbohydrates showed good solubilities in the studied DESs, and some similarities were observed between aqueous solutions and ionic liquids. Ethaline showed the best performance as it had lowest viscosity, and no degradation of the carbohydrate occurred. The intermolecular interactions between glucose and Ethaline molecules were investigated by spectroscopic techniques, including 1H NMR and 2D {1H-1H}-NOESY and {1H-19F}-HOESY. Results showed that the hydrogen bond acceptor ability of the choline anion was mainly responsible for the dissolution of the carbohydrate. The solubility of cellulose in ionic liquids and DESs is discussed in terms of the thermodynamics of solvation, being concluded that the entropy change of solvation was the driving force for cellulose solubility in highly ordered ionic liquids. The lower order of DESs could not enable sufficient entropy gain of the solvent resulting lower solubilisation.",
author = "Riina H{\"a}kkinen and Andrew Abbott",
year = "2019",
month = "8",
day = "5",
doi = "10.1039/c9gc00559e",
language = "English",
volume = "21",
pages = "4673--4682",
journal = "Green Chemistry",
issn = "1463-9262",
publisher = "Royal Society of Chemistry RSC",
number = "17",

}

Solvation of carbohydrates in five choline chloride-based deep eutectic solvents and the implication for cellulose solubility. / Häkkinen, Riina; Abbott, Andrew (Corresponding Author).

In: Green Chemistry, Vol. 21, No. 17, 05.08.2019, p. 4673-4682.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Solvation of carbohydrates in five choline chloride-based deep eutectic solvents and the implication for cellulose solubility

AU - Häkkinen, Riina

AU - Abbott, Andrew

PY - 2019/8/5

Y1 - 2019/8/5

N2 - Most organic solvents cannot dissolve carbohydrates due to the lack of hydrogen bonding ability of the solvent. The components of deep eutectic solvents (DESs) are held together with strong hydrogen bonds, which are capable of forming favourable interactions with carbohydrates. In this paper, we study the solute-solvent interactions of glucose, sucrose, erythritol, cellobiose, starch and cellulose in five different choline chloride-based DESs. The hydrogen bond donors used were urea, oxalic acid, ethylene glycol, glycerol, and 1,5-pentanediol. Molecular weight of starch and cellulose was determined by size exclusion chromatography, and the degree of polymerisation was noticed to influence the solubility. The enthalpy of hydrogen bond formation of the DESs was quantified by differential scanning calorimetry, and found to correlate well with the solubilities of the mono and di-saccharides. No correlation was found between void size of DESs and carbohydrate solubility, whereas high viscosity of the DESs restricted the solubility. In general, carbohydrates showed good solubilities in the studied DESs, and some similarities were observed between aqueous solutions and ionic liquids. Ethaline showed the best performance as it had lowest viscosity, and no degradation of the carbohydrate occurred. The intermolecular interactions between glucose and Ethaline molecules were investigated by spectroscopic techniques, including 1H NMR and 2D {1H-1H}-NOESY and {1H-19F}-HOESY. Results showed that the hydrogen bond acceptor ability of the choline anion was mainly responsible for the dissolution of the carbohydrate. The solubility of cellulose in ionic liquids and DESs is discussed in terms of the thermodynamics of solvation, being concluded that the entropy change of solvation was the driving force for cellulose solubility in highly ordered ionic liquids. The lower order of DESs could not enable sufficient entropy gain of the solvent resulting lower solubilisation.

AB - Most organic solvents cannot dissolve carbohydrates due to the lack of hydrogen bonding ability of the solvent. The components of deep eutectic solvents (DESs) are held together with strong hydrogen bonds, which are capable of forming favourable interactions with carbohydrates. In this paper, we study the solute-solvent interactions of glucose, sucrose, erythritol, cellobiose, starch and cellulose in five different choline chloride-based DESs. The hydrogen bond donors used were urea, oxalic acid, ethylene glycol, glycerol, and 1,5-pentanediol. Molecular weight of starch and cellulose was determined by size exclusion chromatography, and the degree of polymerisation was noticed to influence the solubility. The enthalpy of hydrogen bond formation of the DESs was quantified by differential scanning calorimetry, and found to correlate well with the solubilities of the mono and di-saccharides. No correlation was found between void size of DESs and carbohydrate solubility, whereas high viscosity of the DESs restricted the solubility. In general, carbohydrates showed good solubilities in the studied DESs, and some similarities were observed between aqueous solutions and ionic liquids. Ethaline showed the best performance as it had lowest viscosity, and no degradation of the carbohydrate occurred. The intermolecular interactions between glucose and Ethaline molecules were investigated by spectroscopic techniques, including 1H NMR and 2D {1H-1H}-NOESY and {1H-19F}-HOESY. Results showed that the hydrogen bond acceptor ability of the choline anion was mainly responsible for the dissolution of the carbohydrate. The solubility of cellulose in ionic liquids and DESs is discussed in terms of the thermodynamics of solvation, being concluded that the entropy change of solvation was the driving force for cellulose solubility in highly ordered ionic liquids. The lower order of DESs could not enable sufficient entropy gain of the solvent resulting lower solubilisation.

UR - http://www.scopus.com/inward/record.url?scp=85071948244&partnerID=8YFLogxK

U2 - 10.1039/c9gc00559e

DO - 10.1039/c9gc00559e

M3 - Article

AN - SCOPUS:85071948244

VL - 21

SP - 4673

EP - 4682

JO - Green Chemistry

JF - Green Chemistry

SN - 1463-9262

IS - 17

ER -