Solvent impact on esterification and film formation ability of nanofibrillated cellulose

Sauli Vuoti (Corresponding Author), Riku Talja, L-S. Johansson, Harri Heikkinen, Tekla Tammelin

    Research output: Contribution to journalArticleScientificpeer-review

    28 Citations (Scopus)

    Abstract

    In this study we have manufactured nanofibrillar cellulose and modified the fibre surface with ester groups in order to hydrophobise the surface. Nanofibrillated cellulose was chosen to demonstrate the phenomena, since due to its high surface area the effects at issue are pronounced. The prepared NFC ester derivatives were butyrate, hexanoate, benzoate, naphtoate, diphenyl acetate, stearate and palmitate. X-ray photoelectron spectroscopy, solid state NMR and contact angle measurements were used to demonstrate the chemical changes taking place on the cellulose surface. NFC ester derivatives can be prepared after a careful solvent exchange to a water-free solvent medium has been carried out. Butyl and palmitoyl esters were chosen for film forming tests due to the difference in their carbon chain lengths, and their contact angles and water vapour and oxygen permeation rates were studied. The prepared nanocellulose esters show increased hydrophobicity even at very low levels of substitution and readily form films when the films are prepared from acetone dispersions. The permeation rates suggest a potential use as barrier materials.
    Original languageEnglish
    Pages (from-to)2359-2370
    JournalCellulose
    Volume20
    Issue number5
    DOIs
    Publication statusPublished - 2013
    MoE publication typeA1 Journal article-refereed

    Keywords

    • barrier materials
    • cellulose esters
    • films
    • nanofibrillated cellulose

    Fingerprint Dive into the research topics of 'Solvent impact on esterification and film formation ability of nanofibrillated cellulose'. Together they form a unique fingerprint.

  • Cite this