TY - JOUR
T1 - SO2 emission measurement with the European standard reference method, EN 14791, and alternative methods–observations from laboratory and field studies
AU - Pellikka, Tuula
AU - Kajolinna, Tuula
AU - Perälä, Miia
N1 - Funding Information:
This research was carried out as part of the Sulf-Norm-project. The authors gratefully acknowledge funding for the Sulf-Norm-project from the European Metrology Programme for Innovation and Research, EMPIR which is jointly funded by the EMPIR participating countries within EURAMET and the European Union. The European Metrology Programme for Innovation and Research (EMPIR) coordinates research projects to address major challenges, while supporting and developing the SI system of measurement units (https://www.euramet.org/research-innovation/research-empir/). We also thank Gasmet Europe Ltd for providing the instrumentation used in the testing, and Stora Enso for providing the possibility to perform the field measurements in their stack.
Publisher Copyright:
© 2019, © 2019 The Author(s). Published with license by Taylor & Francis Group, LLC.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/8/5
Y1 - 2019/8/5
N2 - EN 14791 is a European Standard Reference method for the measurement of SO2 in emissions. This standard is based on a wet-chemical method in which SO2 present in flue gases is absorbed into an absorption solution containing hydrogen peroxide, and analyzed as sulfates after sampling. This study presents the results obtained when three portable automated measuring systems (P-AMS), based on Fourier-transform infrared (FTIR) spectroscopy, non-dispersive infrared (NDIR) and ultraviolet-fluorescence (UV) techniques, were compared to the Standard Reference Method for SO2 (EN 14791) in order to verify whether they could be used as alternative methods (AM) to EN 14791. In the case of FTIR, the measurements were performed from hot and wet gas, without any conditioning. UV-fluorescence analyzers were equipped with dilution probes and one NDIR applied a permeation dryer, whereas the other had a chiller. Tests were carried out at concentration ranges from 0 to 200 mg/m3(n) and from 0 to 800 mg/m3(n) for testing of equivalency according to CEN/TS 14793 using a test bench. Equivalency test criteria were met for all tested P-AMS except for NDIR at the lower range. The SO2 results measured with NDIR and the chiller were lower compared to the set-up with NDIR and permeation. This was most probably due to the chiller causing absorption of SO2 in the condensate. Tests were also carried out at field conditions, measuring the SO2 emissions from a boiler combusting mainly bark. The same phenomena were observed in these tests as during the test bench study, i.e. the measurement set-up with NDIR and the chiller gave the lowest results. These data demonstrated that the tested alternative methods (FTIR, UV-fluorescence, and NDIR) could be used instead of the standard reference method EN 14791, thus providing real-time calibration of automated measuring systems. It must however be emphasized that when measuring water-soluble gases, such as SO2, the choice of suitable conditioning technique is critical in order to minimize losses of the studied component in the condensate. Implications: Portable automated measuring systems (P-AMS) provide real-time information about emissions and their concentrations, thus offering significant advantages compared to wet-chemical methods. This study presents results which can be used as a validation protocol to show that the tested P-AMS techniques (FTIR, NDIR, UV-fluorescence) could be used instead of EN 14791 (CEN 2017a) as alternative methods (AM), when paying attention to the selection of an appropriate conditioning technique.
AB - EN 14791 is a European Standard Reference method for the measurement of SO2 in emissions. This standard is based on a wet-chemical method in which SO2 present in flue gases is absorbed into an absorption solution containing hydrogen peroxide, and analyzed as sulfates after sampling. This study presents the results obtained when three portable automated measuring systems (P-AMS), based on Fourier-transform infrared (FTIR) spectroscopy, non-dispersive infrared (NDIR) and ultraviolet-fluorescence (UV) techniques, were compared to the Standard Reference Method for SO2 (EN 14791) in order to verify whether they could be used as alternative methods (AM) to EN 14791. In the case of FTIR, the measurements were performed from hot and wet gas, without any conditioning. UV-fluorescence analyzers were equipped with dilution probes and one NDIR applied a permeation dryer, whereas the other had a chiller. Tests were carried out at concentration ranges from 0 to 200 mg/m3(n) and from 0 to 800 mg/m3(n) for testing of equivalency according to CEN/TS 14793 using a test bench. Equivalency test criteria were met for all tested P-AMS except for NDIR at the lower range. The SO2 results measured with NDIR and the chiller were lower compared to the set-up with NDIR and permeation. This was most probably due to the chiller causing absorption of SO2 in the condensate. Tests were also carried out at field conditions, measuring the SO2 emissions from a boiler combusting mainly bark. The same phenomena were observed in these tests as during the test bench study, i.e. the measurement set-up with NDIR and the chiller gave the lowest results. These data demonstrated that the tested alternative methods (FTIR, UV-fluorescence, and NDIR) could be used instead of the standard reference method EN 14791, thus providing real-time calibration of automated measuring systems. It must however be emphasized that when measuring water-soluble gases, such as SO2, the choice of suitable conditioning technique is critical in order to minimize losses of the studied component in the condensate. Implications: Portable automated measuring systems (P-AMS) provide real-time information about emissions and their concentrations, thus offering significant advantages compared to wet-chemical methods. This study presents results which can be used as a validation protocol to show that the tested P-AMS techniques (FTIR, NDIR, UV-fluorescence) could be used instead of EN 14791 (CEN 2017a) as alternative methods (AM), when paying attention to the selection of an appropriate conditioning technique.
UR - http://www.scopus.com/inward/record.url?scp=85070473271&partnerID=8YFLogxK
U2 - 10.1080/10962247.2019.1640809
DO - 10.1080/10962247.2019.1640809
M3 - Article
C2 - 31298978
AN - SCOPUS:85070473271
SN - 1096-2247
VL - 69
SP - 1122
EP - 1131
JO - Journal of the Air and Waste Management Association
JF - Journal of the Air and Waste Management Association
IS - 9
ER -