Abstract
The study was conducted to reinforce starch-based biocomposite films using cellulose nanocrystals (CNCs) from garlic stalks. An average yield of 4.6% by mass based from air-dried garlic stalks was obtained through alkali delignification, acid hydrolysis and sonication. The isolated CNCs are spherical and have an average diameter of 35 nm and crystallinity of 62%. Fourier transform infrared spectra correspond to the structure of cellulose, but some absorption bands corresponding to hemicelluloses were also noticed. Starch-based biocomposite films with varying amount of the isolated CNCs as reinforcing filler were prepared by solution casting and evaporation method. Scanning electron micrographs of the films showed homogeneous dispersion of CNC in the starch matrix. Improvement in tensile strength and modulus was at maximum when the starch to CNC ratio is 100:5. The thermal stability of the films, on the other hand, decreased with the addition of CNC. Finally, CNC-reinforced films had lower moisture uptake than nonreinforced films.
Original language | English |
---|---|
Pages (from-to) | 1325–1332 |
Journal | Polymer Composites |
Volume | 34 |
DOIs | |
Publication status | Published - 2013 |
MoE publication type | A1 Journal article-refereed |