State of health estimation and remaining useful life prediction of solid oxide fuel cell stack

B. Dolenc, P. Boskoski, M. Stepancic, A. Pohjoranta, D. Juricic

    Research output: Contribution to journalArticleScientificpeer-review

    8 Citations (Scopus)

    Abstract

    Having concurrent information regarding the state of health (SoH) of an operating solid oxide fuel cell (SOFC) stack can actively improve its overall management. Firstly, operating the SOFC by taking into account current health conditions, and its anticipated trend, can be beneficial to the total life span of the stack. Furthermore, such information can be of great importance to the maintenance staff, e.g. unplanned shutdowns can be avoided. Relatively little work has been done in the field of remaining useful life (RUL) prediction of SOFCs. The majority of work employs stack/cell voltage as a direct link for RUL predictions. This paper proposes an integrated approach for SoH estimation based on stack's Ohmic area specific resistance (ASR). Subsequently, a drift model that describes the ASR increase over time enables accurate RUL prediction. The approach consists of three steps. Firstly, an Unscented Kalman filter, based on a lumped stack model, estimates the current ASR value. Secondly, a drift model for describing the temporal evolution in ASR is recursively identified employing the linear Kalman filter. Finally, employing the identified drift model, Monte Carlo simulation is performed to predict future time evolution in ASR and so to obtain RUL. The developed approach is validated with experimental data from a 10 kW SOFC power system. The results confirm that ASR is a viable SoH indicator for the SOFC stack.
    Original languageEnglish
    Pages (from-to)993-1002
    Number of pages10
    JournalEnergy Conversion and Management
    Volume148
    DOIs
    Publication statusPublished - 1 Jan 2017
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    Solid oxide fuel cells (SOFC)
    Health
    Kalman filters
    Electric potential

    Keywords

    • area specific resistance (ASR)
    • degradation
    • drift model identification
    • non-linear estimation
    • remaining useful life prediction (RUL)
    • solid oxide fuel cell (SOFC) stack

    Cite this

    Dolenc, B. ; Boskoski, P. ; Stepancic, M. ; Pohjoranta, A. ; Juricic, D. / State of health estimation and remaining useful life prediction of solid oxide fuel cell stack. In: Energy Conversion and Management. 2017 ; Vol. 148. pp. 993-1002.
    @article{c358b7563cb9469a8193082b86a65122,
    title = "State of health estimation and remaining useful life prediction of solid oxide fuel cell stack",
    abstract = "Having concurrent information regarding the state of health (SoH) of an operating solid oxide fuel cell (SOFC) stack can actively improve its overall management. Firstly, operating the SOFC by taking into account current health conditions, and its anticipated trend, can be beneficial to the total life span of the stack. Furthermore, such information can be of great importance to the maintenance staff, e.g. unplanned shutdowns can be avoided. Relatively little work has been done in the field of remaining useful life (RUL) prediction of SOFCs. The majority of work employs stack/cell voltage as a direct link for RUL predictions. This paper proposes an integrated approach for SoH estimation based on stack's Ohmic area specific resistance (ASR). Subsequently, a drift model that describes the ASR increase over time enables accurate RUL prediction. The approach consists of three steps. Firstly, an Unscented Kalman filter, based on a lumped stack model, estimates the current ASR value. Secondly, a drift model for describing the temporal evolution in ASR is recursively identified employing the linear Kalman filter. Finally, employing the identified drift model, Monte Carlo simulation is performed to predict future time evolution in ASR and so to obtain RUL. The developed approach is validated with experimental data from a 10 kW SOFC power system. The results confirm that ASR is a viable SoH indicator for the SOFC stack.",
    keywords = "area specific resistance (ASR), degradation, drift model identification, non-linear estimation, remaining useful life prediction (RUL), solid oxide fuel cell (SOFC) stack",
    author = "B. Dolenc and P. Boskoski and M. Stepancic and A. Pohjoranta and D. Juricic",
    year = "2017",
    month = "1",
    day = "1",
    doi = "10.1016/j.enconman.2017.06.041",
    language = "English",
    volume = "148",
    pages = "993--1002",
    journal = "Energy Conversion and Management",
    issn = "0196-8904",
    publisher = "Elsevier",

    }

    State of health estimation and remaining useful life prediction of solid oxide fuel cell stack. / Dolenc, B.; Boskoski, P.; Stepancic, M.; Pohjoranta, A.; Juricic, D.

    In: Energy Conversion and Management, Vol. 148, 01.01.2017, p. 993-1002.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - State of health estimation and remaining useful life prediction of solid oxide fuel cell stack

    AU - Dolenc, B.

    AU - Boskoski, P.

    AU - Stepancic, M.

    AU - Pohjoranta, A.

    AU - Juricic, D.

    PY - 2017/1/1

    Y1 - 2017/1/1

    N2 - Having concurrent information regarding the state of health (SoH) of an operating solid oxide fuel cell (SOFC) stack can actively improve its overall management. Firstly, operating the SOFC by taking into account current health conditions, and its anticipated trend, can be beneficial to the total life span of the stack. Furthermore, such information can be of great importance to the maintenance staff, e.g. unplanned shutdowns can be avoided. Relatively little work has been done in the field of remaining useful life (RUL) prediction of SOFCs. The majority of work employs stack/cell voltage as a direct link for RUL predictions. This paper proposes an integrated approach for SoH estimation based on stack's Ohmic area specific resistance (ASR). Subsequently, a drift model that describes the ASR increase over time enables accurate RUL prediction. The approach consists of three steps. Firstly, an Unscented Kalman filter, based on a lumped stack model, estimates the current ASR value. Secondly, a drift model for describing the temporal evolution in ASR is recursively identified employing the linear Kalman filter. Finally, employing the identified drift model, Monte Carlo simulation is performed to predict future time evolution in ASR and so to obtain RUL. The developed approach is validated with experimental data from a 10 kW SOFC power system. The results confirm that ASR is a viable SoH indicator for the SOFC stack.

    AB - Having concurrent information regarding the state of health (SoH) of an operating solid oxide fuel cell (SOFC) stack can actively improve its overall management. Firstly, operating the SOFC by taking into account current health conditions, and its anticipated trend, can be beneficial to the total life span of the stack. Furthermore, such information can be of great importance to the maintenance staff, e.g. unplanned shutdowns can be avoided. Relatively little work has been done in the field of remaining useful life (RUL) prediction of SOFCs. The majority of work employs stack/cell voltage as a direct link for RUL predictions. This paper proposes an integrated approach for SoH estimation based on stack's Ohmic area specific resistance (ASR). Subsequently, a drift model that describes the ASR increase over time enables accurate RUL prediction. The approach consists of three steps. Firstly, an Unscented Kalman filter, based on a lumped stack model, estimates the current ASR value. Secondly, a drift model for describing the temporal evolution in ASR is recursively identified employing the linear Kalman filter. Finally, employing the identified drift model, Monte Carlo simulation is performed to predict future time evolution in ASR and so to obtain RUL. The developed approach is validated with experimental data from a 10 kW SOFC power system. The results confirm that ASR is a viable SoH indicator for the SOFC stack.

    KW - area specific resistance (ASR)

    KW - degradation

    KW - drift model identification

    KW - non-linear estimation

    KW - remaining useful life prediction (RUL)

    KW - solid oxide fuel cell (SOFC) stack

    UR - http://www.scopus.com/inward/record.url?scp=85021662036&partnerID=8YFLogxK

    U2 - 10.1016/j.enconman.2017.06.041

    DO - 10.1016/j.enconman.2017.06.041

    M3 - Article

    VL - 148

    SP - 993

    EP - 1002

    JO - Energy Conversion and Management

    JF - Energy Conversion and Management

    SN - 0196-8904

    ER -