Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database

X. Litaudon (Corresponding Author), E. Barbato, A. Bécoulet, E.J. Doyle, T. Fujita, P. Gohil, F. Imbeaux, O. Sauter, G. Sips, J. Connor, E.J. Doyle, Yu Esipchuk, T. Fujita, T. Fukuda, P. Gohil, J. Kinsey, N. Kirneva, S. Lebedev, X. Litaudon, V. MukhovatovJ. Rice, E. Synakowski, K. Toi, B. Unterberg, V. Vershkov, M. Wakatani, T. Aniel, Yu F. Baranov, E. Barbato, A. Bécoulet, R. Behn, C. Bourdelle, G. Bracco, R.V. Budny, P. Buratti, E.J. Doyle, Yu Esipchuk, B. Esposito, S. Ide, A.R. Field, T. Fujita, T. Fukuda, P. Gohil, C. Gormezano, C. Greenfield, M. Greenwald, T.S. Hahm, G.T. Hoang, J. Hobirk, D. Hogeweij, S. Ide, A. Isayama, F. Imbeaux, E. Joffrin, Y. Kamada, J. Kinsey, N. Kirneva, X. Litaudon, T.C. Luce, M. Murakami, V. Parail, Y-K.M. Peng, F. Ryter, Y. Sakamoto, H. Shirai, G. Sips, T. Suzuki, E. Synakowski, H. Takenaga, T. Takizuka, Tuomas Tala, M.R. Wade, J. Weiland

Research output: Contribution to journalArticleScientificpeer-review

30 Citations (Scopus)

Abstract

Advanced tokamak regimes obtained in ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, TCV and Tore Supra experiments are assessed both in terms of their fusion performance and capability for ultimately reaching steady-state using data from the international internal transport barrier database. These advanced modes of tokamak operation are characterized by an improved core confinement and a modified current profile compared to the relaxed Ohmically driven one. The present results obtained in these experiments are studied in view of their prospect for achieving either long pulses ('hybrid' scenario with inductive and non-inductive current drive) or ultimately steady-state purely non-inductive current drive operation in next step devices such as ITER. A new operational diagram for advanced tokamak operation is proposed where the figure of merit characterizing the fusion performances and confinement, H × βN / q 295, is drawn versus the fraction of the plasma current driven by the bootstrap effect. In this diagram, present day advanced tokamak regimes have now reached an operational domain that is required in the non-inductive ITER current drive operation with typically 50% of the plasma current driven by the bootstrap effect (Green et al 2003 Plasma Phys. Control. Fusion 45 587). In addition, the existence domain of the advanced mode regimes is also mapped in terms of dimensionless plasmas physics quantities such as normalized Larmor radius, normalized collisionality, Mach number and ratio of ion to electron temperature. The gap between present day and future advanced tokamak experiments is quantitatively assessed in terms of these dimensionless parameters.
Original languageEnglish
Pages (from-to)A19 - A34
Number of pages16
JournalPlasma Physics and Controlled Fusion
Volume46
Issue number5A
DOIs
Publication statusPublished - 2004
MoE publication typeA1 Journal article-refereed

Fingerprint

Physics
Plasmas
physics
Fusion reactions
fusion
plasma currents
diagrams
Larmor radius
Experiments
Electron temperature
plasma physics
Mach number
figure of merit
electron energy
Ions
profiles
pulses
ions

Keywords

  • JET
  • plasma
  • fusion energy
  • fusion reactors
  • tokamak
  • internal transport barriers
  • ITER

Cite this

Litaudon, X. ; Barbato, E. ; Bécoulet, A. ; Doyle, E.J. ; Fujita, T. ; Gohil, P. ; Imbeaux, F. ; Sauter, O. ; Sips, G. ; Connor, J. ; Doyle, E.J. ; Esipchuk, Yu ; Fujita, T. ; Fukuda, T. ; Gohil, P. ; Kinsey, J. ; Kirneva, N. ; Lebedev, S. ; Litaudon, X. ; Mukhovatov, V. ; Rice, J. ; Synakowski, E. ; Toi, K. ; Unterberg, B. ; Vershkov, V. ; Wakatani, M. ; Aniel, T. ; Baranov, Yu F. ; Barbato, E. ; Bécoulet, A. ; Behn, R. ; Bourdelle, C. ; Bracco, G. ; Budny, R.V. ; Buratti, P. ; Doyle, E.J. ; Esipchuk, Yu ; Esposito, B. ; Ide, S. ; Field, A.R. ; Fujita, T. ; Fukuda, T. ; Gohil, P. ; Gormezano, C. ; Greenfield, C. ; Greenwald, M. ; Hahm, T.S. ; Hoang, G.T. ; Hobirk, J. ; Hogeweij, D. ; Ide, S. ; Isayama, A. ; Imbeaux, F. ; Joffrin, E. ; Kamada, Y. ; Kinsey, J. ; Kirneva, N. ; Litaudon, X. ; Luce, T.C. ; Murakami, M. ; Parail, V. ; Peng, Y-K.M. ; Ryter, F. ; Sakamoto, Y. ; Shirai, H. ; Sips, G. ; Suzuki, T. ; Synakowski, E. ; Takenaga, H. ; Takizuka, T. ; Tala, Tuomas ; Wade, M.R. ; Weiland, J. / Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database. In: Plasma Physics and Controlled Fusion. 2004 ; Vol. 46, No. 5A. pp. A19 - A34.
@article{906ee9cd300045d3a282b5925f9dede5,
title = "Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database",
abstract = "Advanced tokamak regimes obtained in ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, TCV and Tore Supra experiments are assessed both in terms of their fusion performance and capability for ultimately reaching steady-state using data from the international internal transport barrier database. These advanced modes of tokamak operation are characterized by an improved core confinement and a modified current profile compared to the relaxed Ohmically driven one. The present results obtained in these experiments are studied in view of their prospect for achieving either long pulses ('hybrid' scenario with inductive and non-inductive current drive) or ultimately steady-state purely non-inductive current drive operation in next step devices such as ITER. A new operational diagram for advanced tokamak operation is proposed where the figure of merit characterizing the fusion performances and confinement, H × βN / q 295, is drawn versus the fraction of the plasma current driven by the bootstrap effect. In this diagram, present day advanced tokamak regimes have now reached an operational domain that is required in the non-inductive ITER current drive operation with typically 50{\%} of the plasma current driven by the bootstrap effect (Green et al 2003 Plasma Phys. Control. Fusion 45 587). In addition, the existence domain of the advanced mode regimes is also mapped in terms of dimensionless plasmas physics quantities such as normalized Larmor radius, normalized collisionality, Mach number and ratio of ion to electron temperature. The gap between present day and future advanced tokamak experiments is quantitatively assessed in terms of these dimensionless parameters.",
keywords = "JET, plasma, fusion energy, fusion reactors, tokamak, internal transport barriers, ITER",
author = "X. Litaudon and E. Barbato and A. B{\'e}coulet and E.J. Doyle and T. Fujita and P. Gohil and F. Imbeaux and O. Sauter and G. Sips and J. Connor and E.J. Doyle and Yu Esipchuk and T. Fujita and T. Fukuda and P. Gohil and J. Kinsey and N. Kirneva and S. Lebedev and X. Litaudon and V. Mukhovatov and J. Rice and E. Synakowski and K. Toi and B. Unterberg and V. Vershkov and M. Wakatani and T. Aniel and Baranov, {Yu F.} and E. Barbato and A. B{\'e}coulet and R. Behn and C. Bourdelle and G. Bracco and R.V. Budny and P. Buratti and E.J. Doyle and Yu Esipchuk and B. Esposito and S. Ide and A.R. Field and T. Fujita and T. Fukuda and P. Gohil and C. Gormezano and C. Greenfield and M. Greenwald and T.S. Hahm and G.T. Hoang and J. Hobirk and D. Hogeweij and S. Ide and A. Isayama and F. Imbeaux and E. Joffrin and Y. Kamada and J. Kinsey and N. Kirneva and X. Litaudon and T.C. Luce and M. Murakami and V. Parail and Y-K.M. Peng and F. Ryter and Y. Sakamoto and H. Shirai and G. Sips and T. Suzuki and E. Synakowski and H. Takenaga and T. Takizuka and Tuomas Tala and M.R. Wade and J. Weiland",
year = "2004",
doi = "10.1088/0741-3335/46/5A/002",
language = "English",
volume = "46",
pages = "A19 -- A34",
journal = "Plasma Physics and Controlled Fusion",
issn = "0741-3335",
publisher = "Institute of Physics IOP",
number = "5A",

}

Litaudon, X, Barbato, E, Bécoulet, A, Doyle, EJ, Fujita, T, Gohil, P, Imbeaux, F, Sauter, O, Sips, G, Connor, J, Doyle, EJ, Esipchuk, Y, Fujita, T, Fukuda, T, Gohil, P, Kinsey, J, Kirneva, N, Lebedev, S, Litaudon, X, Mukhovatov, V, Rice, J, Synakowski, E, Toi, K, Unterberg, B, Vershkov, V, Wakatani, M, Aniel, T, Baranov, YF, Barbato, E, Bécoulet, A, Behn, R, Bourdelle, C, Bracco, G, Budny, RV, Buratti, P, Doyle, EJ, Esipchuk, Y, Esposito, B, Ide, S, Field, AR, Fujita, T, Fukuda, T, Gohil, P, Gormezano, C, Greenfield, C, Greenwald, M, Hahm, TS, Hoang, GT, Hobirk, J, Hogeweij, D, Ide, S, Isayama, A, Imbeaux, F, Joffrin, E, Kamada, Y, Kinsey, J, Kirneva, N, Litaudon, X, Luce, TC, Murakami, M, Parail, V, Peng, Y-KM, Ryter, F, Sakamoto, Y, Shirai, H, Sips, G, Suzuki, T, Synakowski, E, Takenaga, H, Takizuka, T, Tala, T, Wade, MR & Weiland, J 2004, 'Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database', Plasma Physics and Controlled Fusion, vol. 46, no. 5A, pp. A19 - A34. https://doi.org/10.1088/0741-3335/46/5A/002

Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database. / Litaudon, X. (Corresponding Author); Barbato, E.; Bécoulet, A.; Doyle, E.J.; Fujita, T.; Gohil, P.; Imbeaux, F.; Sauter, O.; Sips, G.; Connor, J.; Doyle, E.J.; Esipchuk, Yu; Fujita, T.; Fukuda, T.; Gohil, P.; Kinsey, J.; Kirneva, N.; Lebedev, S.; Litaudon, X.; Mukhovatov, V.; Rice, J.; Synakowski, E.; Toi, K.; Unterberg, B.; Vershkov, V.; Wakatani, M.; Aniel, T.; Baranov, Yu F.; Barbato, E.; Bécoulet, A.; Behn, R.; Bourdelle, C.; Bracco, G.; Budny, R.V.; Buratti, P.; Doyle, E.J.; Esipchuk, Yu; Esposito, B.; Ide, S.; Field, A.R.; Fujita, T.; Fukuda, T.; Gohil, P.; Gormezano, C.; Greenfield, C.; Greenwald, M.; Hahm, T.S.; Hoang, G.T.; Hobirk, J.; Hogeweij, D.; Ide, S.; Isayama, A.; Imbeaux, F.; Joffrin, E.; Kamada, Y.; Kinsey, J.; Kirneva, N.; Litaudon, X.; Luce, T.C.; Murakami, M.; Parail, V.; Peng, Y-K.M.; Ryter, F.; Sakamoto, Y.; Shirai, H.; Sips, G.; Suzuki, T.; Synakowski, E.; Takenaga, H.; Takizuka, T.; Tala, Tuomas; Wade, M.R.; Weiland, J.

In: Plasma Physics and Controlled Fusion, Vol. 46, No. 5A, 2004, p. A19 - A34.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database

AU - Litaudon, X.

AU - Barbato, E.

AU - Bécoulet, A.

AU - Doyle, E.J.

AU - Fujita, T.

AU - Gohil, P.

AU - Imbeaux, F.

AU - Sauter, O.

AU - Sips, G.

AU - Connor, J.

AU - Doyle, E.J.

AU - Esipchuk, Yu

AU - Fujita, T.

AU - Fukuda, T.

AU - Gohil, P.

AU - Kinsey, J.

AU - Kirneva, N.

AU - Lebedev, S.

AU - Litaudon, X.

AU - Mukhovatov, V.

AU - Rice, J.

AU - Synakowski, E.

AU - Toi, K.

AU - Unterberg, B.

AU - Vershkov, V.

AU - Wakatani, M.

AU - Aniel, T.

AU - Baranov, Yu F.

AU - Barbato, E.

AU - Bécoulet, A.

AU - Behn, R.

AU - Bourdelle, C.

AU - Bracco, G.

AU - Budny, R.V.

AU - Buratti, P.

AU - Doyle, E.J.

AU - Esipchuk, Yu

AU - Esposito, B.

AU - Ide, S.

AU - Field, A.R.

AU - Fujita, T.

AU - Fukuda, T.

AU - Gohil, P.

AU - Gormezano, C.

AU - Greenfield, C.

AU - Greenwald, M.

AU - Hahm, T.S.

AU - Hoang, G.T.

AU - Hobirk, J.

AU - Hogeweij, D.

AU - Ide, S.

AU - Isayama, A.

AU - Imbeaux, F.

AU - Joffrin, E.

AU - Kamada, Y.

AU - Kinsey, J.

AU - Kirneva, N.

AU - Litaudon, X.

AU - Luce, T.C.

AU - Murakami, M.

AU - Parail, V.

AU - Peng, Y-K.M.

AU - Ryter, F.

AU - Sakamoto, Y.

AU - Shirai, H.

AU - Sips, G.

AU - Suzuki, T.

AU - Synakowski, E.

AU - Takenaga, H.

AU - Takizuka, T.

AU - Tala, Tuomas

AU - Wade, M.R.

AU - Weiland, J.

PY - 2004

Y1 - 2004

N2 - Advanced tokamak regimes obtained in ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, TCV and Tore Supra experiments are assessed both in terms of their fusion performance and capability for ultimately reaching steady-state using data from the international internal transport barrier database. These advanced modes of tokamak operation are characterized by an improved core confinement and a modified current profile compared to the relaxed Ohmically driven one. The present results obtained in these experiments are studied in view of their prospect for achieving either long pulses ('hybrid' scenario with inductive and non-inductive current drive) or ultimately steady-state purely non-inductive current drive operation in next step devices such as ITER. A new operational diagram for advanced tokamak operation is proposed where the figure of merit characterizing the fusion performances and confinement, H × βN / q 295, is drawn versus the fraction of the plasma current driven by the bootstrap effect. In this diagram, present day advanced tokamak regimes have now reached an operational domain that is required in the non-inductive ITER current drive operation with typically 50% of the plasma current driven by the bootstrap effect (Green et al 2003 Plasma Phys. Control. Fusion 45 587). In addition, the existence domain of the advanced mode regimes is also mapped in terms of dimensionless plasmas physics quantities such as normalized Larmor radius, normalized collisionality, Mach number and ratio of ion to electron temperature. The gap between present day and future advanced tokamak experiments is quantitatively assessed in terms of these dimensionless parameters.

AB - Advanced tokamak regimes obtained in ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, TCV and Tore Supra experiments are assessed both in terms of their fusion performance and capability for ultimately reaching steady-state using data from the international internal transport barrier database. These advanced modes of tokamak operation are characterized by an improved core confinement and a modified current profile compared to the relaxed Ohmically driven one. The present results obtained in these experiments are studied in view of their prospect for achieving either long pulses ('hybrid' scenario with inductive and non-inductive current drive) or ultimately steady-state purely non-inductive current drive operation in next step devices such as ITER. A new operational diagram for advanced tokamak operation is proposed where the figure of merit characterizing the fusion performances and confinement, H × βN / q 295, is drawn versus the fraction of the plasma current driven by the bootstrap effect. In this diagram, present day advanced tokamak regimes have now reached an operational domain that is required in the non-inductive ITER current drive operation with typically 50% of the plasma current driven by the bootstrap effect (Green et al 2003 Plasma Phys. Control. Fusion 45 587). In addition, the existence domain of the advanced mode regimes is also mapped in terms of dimensionless plasmas physics quantities such as normalized Larmor radius, normalized collisionality, Mach number and ratio of ion to electron temperature. The gap between present day and future advanced tokamak experiments is quantitatively assessed in terms of these dimensionless parameters.

KW - JET

KW - plasma

KW - fusion energy

KW - fusion reactors

KW - tokamak

KW - internal transport barriers

KW - ITER

U2 - 10.1088/0741-3335/46/5A/002

DO - 10.1088/0741-3335/46/5A/002

M3 - Article

VL - 46

SP - A19 - A34

JO - Plasma Physics and Controlled Fusion

JF - Plasma Physics and Controlled Fusion

SN - 0741-3335

IS - 5A

ER -