Abstract
Recent research is underway to study cork oak (Quercus suber L.) wood potential for production of wood components. A total of 35 stems of young and mature cork oaks were sampled, live sawn into flitches, scanned using VTT’s WoodCIM®, and the measured data computed by VTT’s PuuPilot software, allowing stem 3D reconstruction. Sawing simulations were run for 0.5 m and 1 m logs and the whole stem. Sawn products were (1) planks, (2) parquet, (3) lamparquet, and (4) external component of multilayer planks. Cork oak stems showed a moderate to small taper (mean 24 mm/m). Curviness varied between straight to significantly crooked stems (mean value 40 mm) Batch yields for the tested products ranged 25–43% and 37–50% for 0.5 m logs of young and mature trees, respectively; for 1 m logs, batch yields ranged 19–41% and 25–54%. When using the whole stem, batch yields were lower, ranging 11–38% and 15–50%. Higher yields were obtained for all log lengths and samples for production of lamparquet, parquet, and multilayer component.
Original language | English |
---|---|
Pages (from-to) | 745-751 |
Number of pages | 7 |
Journal | European Journal of Forest Research |
Volume | 130 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2011 |
MoE publication type | A1 Journal article-refereed |
Keywords
- 3D stem models
- cork oak
- sawing simulation
- stem quality
- wood conversion
- wood flooring