Structure modification of milk protein gels by enzymatic cross-linking: Dissertation

Dilek Ercili-Cura

    Research output: ThesisDissertationCollection of Articles

    Abstract

    Proteins are the structural building blocks of fermented dairy products such as yoghurt. The nature of the protein-protein interactions and the structure of the macromolecular matrices they form determine the textural and water holding properties of a gel. In this study, the potential of enzymatic protein cross-linking in modification of acid-induced milk protein gel structures was studied by using the oxidative enzymes laccase and tyrosinase as well as the acyltransferase transglutaminase (TG). The efficiency of different cross-linking enzymes with dissimilar reaction mechanisms in modification of milk proteins at various colloidal (in milk or in caseinate) or molecular (native, unfolded) states was investigated. Effects of enzymatically formed inter-molecular covalent bonds on the gel formation dynamics and the textural and water holding properties of acid-induced milk protein gels were elucidated. The results presented in this study have shown that enzymatic cross-linking, even with the non-conventional enzymes tyrosinase and laccase, alters the mechanical properties of acid-induced milk protein gels. However, the knowledge on the mode of action of these enzymes on proteins should be further elucidated in order to be able to exploit them as structure-engineering tools with maximum value. Comparison of tyrosinase and transglutaminase directly in milk, in which caseins are found as association colloids, showed that even rather similar extent of inter-molecular covalent linkages did not necessarily result in similar mechanical properties in final acid-induced gels. It was concluded that it is not solely the introduced covalent links but also the preceding impacts on colloidal interactions by physical means which determine the actual effect of cross-linking on the final product attributes. In this thesis, the potential of one oxidative enzyme, T. reesei tyrosinase (TrT), was demonstrated for the creation of intra-micellarly linked casein particles, similarly to TG. In the future, it will be necessary to determine the physicochemical properties of TrT-induced casein particles as compared to the TG-induced casein particles. Furthermore, in raw milk, TrT was the only enzyme able to increase the gel firmness. This makes TrT a potential enzyme for use in raw milk-based products such as cheese. Finally, elucidation of altered aggregation dynamics for cross-linked protein particles will help to determine the optimum production parameters in order to tailor protein gels for improved product characteristics.
    Original languageEnglish
    QualificationDoctor Degree
    Awarding Institution
    • University of Helsinki
    Supervisors/Advisors
    • Lantto, Raija, Supervisor
    • Partanen, Riitta, Supervisor, External person
    • Buchert, Johanna, Supervisor, External person
    Award date23 Nov 2012
    Place of PublicationEspoo
    Publisher
    Print ISBNs978-951-38-7950-1
    Electronic ISBNs978-951-38-7951-8
    Publication statusPublished - 2012
    MoE publication typeG5 Doctoral dissertation (article)

    Keywords

    • milk
    • protein
    • tyrosinase
    • laccase
    • transglutaminase
    • cross-linking
    • acid gel

    Fingerprint

    Dive into the research topics of 'Structure modification of milk protein gels by enzymatic cross-linking: Dissertation'. Together they form a unique fingerprint.

    Cite this