Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors

K. Sakai, J. S. Adams, S. R. Bandler, J. A. Chervenak, A. M. Datesman, M. E. Eckart, F. M. Finkbeiner, R. L. Kelley, C. A. Kilbourne, A. R. Miniussi, F. S. Porter, J. S. Sadleir, S. J. Smith, N. A. Wakeham, E. J. Wassell, W. Yoon, H. Akamatsu, M. P. Bruijn, L. Gottardi, B. D. Jackson & 5 others J. van der Kuur, B. J. van Leeuwen, A. J. van der Linden, H. J. van Weers, M. Kiviranta

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)

Abstract

We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.

Original languageEnglish
Pages (from-to)356-364
Number of pages9
JournalJournal of Low Temperature Physics
Volume193
Issue number3-4
DOIs
Publication statusPublished - 1 Nov 2018
MoE publication typeNot Eligible

Fingerprint

alternating current
sensors
Sensors
Pixels
Metals
pixels
X ray absorption
Observatories
Eddy currents
eddy currents
European Space Agency
metals
proximity
observatories
x rays
direct current
X rays
Geometry
geometry
configurations

Keywords

  • Eddy current heating
  • Frequency-division multiplexing
  • Microcalorimeters
  • Transition-edge sensors

Cite this

Sakai, K., Adams, J. S., Bandler, S. R., Chervenak, J. A., Datesman, A. M., Eckart, M. E., ... Kiviranta, M. (2018). Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors. Journal of Low Temperature Physics, 193(3-4), 356-364. https://doi.org/10.1007/s10909-018-2002-4
Sakai, K. ; Adams, J. S. ; Bandler, S. R. ; Chervenak, J. A. ; Datesman, A. M. ; Eckart, M. E. ; Finkbeiner, F. M. ; Kelley, R. L. ; Kilbourne, C. A. ; Miniussi, A. R. ; Porter, F. S. ; Sadleir, J. S. ; Smith, S. J. ; Wakeham, N. A. ; Wassell, E. J. ; Yoon, W. ; Akamatsu, H. ; Bruijn, M. P. ; Gottardi, L. ; Jackson, B. D. ; van der Kuur, J. ; van Leeuwen, B. J. ; van der Linden, A. J. ; van Weers, H. J. ; Kiviranta, M. / Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors. In: Journal of Low Temperature Physics. 2018 ; Vol. 193, No. 3-4. pp. 356-364.
@article{10a4d90a78694a62849f8583cf8d77af,
title = "Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors",
abstract = "We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.",
keywords = "Eddy current heating, Frequency-division multiplexing, Microcalorimeters, Transition-edge sensors",
author = "K. Sakai and Adams, {J. S.} and Bandler, {S. R.} and Chervenak, {J. A.} and Datesman, {A. M.} and Eckart, {M. E.} and Finkbeiner, {F. M.} and Kelley, {R. L.} and Kilbourne, {C. A.} and Miniussi, {A. R.} and Porter, {F. S.} and Sadleir, {J. S.} and Smith, {S. J.} and Wakeham, {N. A.} and Wassell, {E. J.} and W. Yoon and H. Akamatsu and Bruijn, {M. P.} and L. Gottardi and Jackson, {B. D.} and {van der Kuur}, J. and {van Leeuwen}, {B. J.} and {van der Linden}, {A. J.} and {van Weers}, {H. J.} and M. Kiviranta",
year = "2018",
month = "11",
day = "1",
doi = "10.1007/s10909-018-2002-4",
language = "English",
volume = "193",
pages = "356--364",
journal = "Journal of Low Temperature Physics",
issn = "0022-2291",
publisher = "Springer",
number = "3-4",

}

Sakai, K, Adams, JS, Bandler, SR, Chervenak, JA, Datesman, AM, Eckart, ME, Finkbeiner, FM, Kelley, RL, Kilbourne, CA, Miniussi, AR, Porter, FS, Sadleir, JS, Smith, SJ, Wakeham, NA, Wassell, EJ, Yoon, W, Akamatsu, H, Bruijn, MP, Gottardi, L, Jackson, BD, van der Kuur, J, van Leeuwen, BJ, van der Linden, AJ, van Weers, HJ & Kiviranta, M 2018, 'Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors', Journal of Low Temperature Physics, vol. 193, no. 3-4, pp. 356-364. https://doi.org/10.1007/s10909-018-2002-4

Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors. / Sakai, K.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. S.; Smith, S. J.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Akamatsu, H.; Bruijn, M. P.; Gottardi, L.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Weers, H. J.; Kiviranta, M.

In: Journal of Low Temperature Physics, Vol. 193, No. 3-4, 01.11.2018, p. 356-364.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors

AU - Sakai, K.

AU - Adams, J. S.

AU - Bandler, S. R.

AU - Chervenak, J. A.

AU - Datesman, A. M.

AU - Eckart, M. E.

AU - Finkbeiner, F. M.

AU - Kelley, R. L.

AU - Kilbourne, C. A.

AU - Miniussi, A. R.

AU - Porter, F. S.

AU - Sadleir, J. S.

AU - Smith, S. J.

AU - Wakeham, N. A.

AU - Wassell, E. J.

AU - Yoon, W.

AU - Akamatsu, H.

AU - Bruijn, M. P.

AU - Gottardi, L.

AU - Jackson, B. D.

AU - van der Kuur, J.

AU - van Leeuwen, B. J.

AU - van der Linden, A. J.

AU - van Weers, H. J.

AU - Kiviranta, M.

PY - 2018/11/1

Y1 - 2018/11/1

N2 - We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.

AB - We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.

KW - Eddy current heating

KW - Frequency-division multiplexing

KW - Microcalorimeters

KW - Transition-edge sensors

UR - http://www.scopus.com/inward/record.url?scp=85049079129&partnerID=8YFLogxK

U2 - 10.1007/s10909-018-2002-4

DO - 10.1007/s10909-018-2002-4

M3 - Article

VL - 193

SP - 356

EP - 364

JO - Journal of Low Temperature Physics

JF - Journal of Low Temperature Physics

SN - 0022-2291

IS - 3-4

ER -

Sakai K, Adams JS, Bandler SR, Chervenak JA, Datesman AM, Eckart ME et al. Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors. Journal of Low Temperature Physics. 2018 Nov 1;193(3-4):356-364. https://doi.org/10.1007/s10909-018-2002-4