Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors

K. Sakai, J. S. Adams, S. R. Bandler, J. A. Chervenak, A. M. Datesman, M. E. Eckart, F. M. Finkbeiner, R. L. Kelley, C. A. Kilbourne, A. R. Miniussi, F. S. Porter, J. S. Sadleir, S. J. Smith, N. A. Wakeham, E. J. Wassell, W. Yoon, H. Akamatsu, M. P. Bruijn, L. Gottardi, B. D. JacksonJ. van der Kuur, B. J. van Leeuwen, A. J. van der Linden, H. J. van Weers, M. Kiviranta

    Research output: Contribution to journalArticleScientificpeer-review

    6 Citations (Scopus)

    Abstract

    We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.

    Original languageEnglish
    Pages (from-to)356-364
    Number of pages9
    JournalJournal of Low Temperature Physics
    Volume193
    Issue number3-4
    DOIs
    Publication statusPublished - 1 Nov 2018
    MoE publication typeNot Eligible

    Fingerprint

    alternating current
    sensors
    Sensors
    Pixels
    Metals
    pixels
    X ray absorption
    Observatories
    Eddy currents
    eddy currents
    European Space Agency
    metals
    proximity
    observatories
    x rays
    direct current
    X rays
    Geometry
    geometry
    configurations

    Keywords

    • Eddy current heating
    • Frequency-division multiplexing
    • Microcalorimeters
    • Transition-edge sensors

    Cite this

    Sakai, K., Adams, J. S., Bandler, S. R., Chervenak, J. A., Datesman, A. M., Eckart, M. E., ... Kiviranta, M. (2018). Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors. Journal of Low Temperature Physics, 193(3-4), 356-364. https://doi.org/10.1007/s10909-018-2002-4
    Sakai, K. ; Adams, J. S. ; Bandler, S. R. ; Chervenak, J. A. ; Datesman, A. M. ; Eckart, M. E. ; Finkbeiner, F. M. ; Kelley, R. L. ; Kilbourne, C. A. ; Miniussi, A. R. ; Porter, F. S. ; Sadleir, J. S. ; Smith, S. J. ; Wakeham, N. A. ; Wassell, E. J. ; Yoon, W. ; Akamatsu, H. ; Bruijn, M. P. ; Gottardi, L. ; Jackson, B. D. ; van der Kuur, J. ; van Leeuwen, B. J. ; van der Linden, A. J. ; van Weers, H. J. ; Kiviranta, M. / Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors. In: Journal of Low Temperature Physics. 2018 ; Vol. 193, No. 3-4. pp. 356-364.
    @article{10a4d90a78694a62849f8583cf8d77af,
    title = "Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors",
    abstract = "We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.",
    keywords = "Eddy current heating, Frequency-division multiplexing, Microcalorimeters, Transition-edge sensors",
    author = "K. Sakai and Adams, {J. S.} and Bandler, {S. R.} and Chervenak, {J. A.} and Datesman, {A. M.} and Eckart, {M. E.} and Finkbeiner, {F. M.} and Kelley, {R. L.} and Kilbourne, {C. A.} and Miniussi, {A. R.} and Porter, {F. S.} and Sadleir, {J. S.} and Smith, {S. J.} and Wakeham, {N. A.} and Wassell, {E. J.} and W. Yoon and H. Akamatsu and Bruijn, {M. P.} and L. Gottardi and Jackson, {B. D.} and {van der Kuur}, J. and {van Leeuwen}, {B. J.} and {van der Linden}, {A. J.} and {van Weers}, {H. J.} and M. Kiviranta",
    year = "2018",
    month = "11",
    day = "1",
    doi = "10.1007/s10909-018-2002-4",
    language = "English",
    volume = "193",
    pages = "356--364",
    journal = "Journal of Low Temperature Physics",
    issn = "0022-2291",
    publisher = "Springer",
    number = "3-4",

    }

    Sakai, K, Adams, JS, Bandler, SR, Chervenak, JA, Datesman, AM, Eckart, ME, Finkbeiner, FM, Kelley, RL, Kilbourne, CA, Miniussi, AR, Porter, FS, Sadleir, JS, Smith, SJ, Wakeham, NA, Wassell, EJ, Yoon, W, Akamatsu, H, Bruijn, MP, Gottardi, L, Jackson, BD, van der Kuur, J, van Leeuwen, BJ, van der Linden, AJ, van Weers, HJ & Kiviranta, M 2018, 'Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors', Journal of Low Temperature Physics, vol. 193, no. 3-4, pp. 356-364. https://doi.org/10.1007/s10909-018-2002-4

    Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors. / Sakai, K.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. S.; Smith, S. J.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Akamatsu, H.; Bruijn, M. P.; Gottardi, L.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Weers, H. J.; Kiviranta, M.

    In: Journal of Low Temperature Physics, Vol. 193, No. 3-4, 01.11.2018, p. 356-364.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors

    AU - Sakai, K.

    AU - Adams, J. S.

    AU - Bandler, S. R.

    AU - Chervenak, J. A.

    AU - Datesman, A. M.

    AU - Eckart, M. E.

    AU - Finkbeiner, F. M.

    AU - Kelley, R. L.

    AU - Kilbourne, C. A.

    AU - Miniussi, A. R.

    AU - Porter, F. S.

    AU - Sadleir, J. S.

    AU - Smith, S. J.

    AU - Wakeham, N. A.

    AU - Wassell, E. J.

    AU - Yoon, W.

    AU - Akamatsu, H.

    AU - Bruijn, M. P.

    AU - Gottardi, L.

    AU - Jackson, B. D.

    AU - van der Kuur, J.

    AU - van Leeuwen, B. J.

    AU - van der Linden, A. J.

    AU - van Weers, H. J.

    AU - Kiviranta, M.

    PY - 2018/11/1

    Y1 - 2018/11/1

    N2 - We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.

    AB - We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.

    KW - Eddy current heating

    KW - Frequency-division multiplexing

    KW - Microcalorimeters

    KW - Transition-edge sensors

    UR - http://www.scopus.com/inward/record.url?scp=85049079129&partnerID=8YFLogxK

    U2 - 10.1007/s10909-018-2002-4

    DO - 10.1007/s10909-018-2002-4

    M3 - Article

    AN - SCOPUS:85049079129

    VL - 193

    SP - 356

    EP - 364

    JO - Journal of Low Temperature Physics

    JF - Journal of Low Temperature Physics

    SN - 0022-2291

    IS - 3-4

    ER -

    Sakai K, Adams JS, Bandler SR, Chervenak JA, Datesman AM, Eckart ME et al. Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors. Journal of Low Temperature Physics. 2018 Nov 1;193(3-4):356-364. https://doi.org/10.1007/s10909-018-2002-4