Techniques and tools for measuring energy efficiency of scientific software applications

David Abdurachmanov, Peter Elmer, Giulio Eulisse, Robert Knight, Tapio Niemi, Jukka K. Nurminen, Filip Nyback, Gonçalo Pestana, Zhonghong Ou, Kashif Khan

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)

Abstract

The scale of scientific High Performance Computing (HPC) and High Throughput Computing (HTC) has increased significantly in recent years, and is becoming sensitive to total energy use and cost. Energy-efficiency has thus become an important concern in scientific fields such as High Energy Physics (HEP). There has been a growing interest in utilizing alternate architectures, such as low power ARM processors, to replace traditional Intel x86 architectures. Nevertheless, even though such solutions have been successfully used in mobile applications with low I/O and memory demands, it is unclear if they are suitable and more energy-efficient in the scientific computing environment. Furthermore, there is a lack of tools and experience to derive and compare power consumption between the architectures for various workloads, and eventually to support software optimizations for energy efficiency. To that end, we have performed several physical and software-based measurements of workloads from HEP applications running on ARM and Intel architectures, and compare their power consumption and performance. We leverage several profiling tools (both in hardware and software) to extract different characteristics of the power use. We report the results of these measurements and the experience gained in developing a set of measurement techniques and profiling tools to accurately assess the power consumption for scientific workloads.
Original languageEnglish
Article number012032
JournalJournal of Physics: Conference Series
Volume608
DOIs
Publication statusPublished - 22 May 2015
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Techniques and tools for measuring energy efficiency of scientific software applications'. Together they form a unique fingerprint.

Cite this