Abstract
The microstructure changes taking place in W under irradiation are governed by many factors, amongst which C impurities and their interactions with self-interstitial atoms (SIA). In this work, we specifically study this effect by conducting a dedicated 2-MeV self-ions irradiation experiment, at room temperature. Samples were irradiated up to 0.02, 0.15 and 1.2 dpa. Transmission electron microscopy (TEM) expectedly revealed a large density of SIA loops at all these doses. Surprisingly, however, the loop number density increased in a non-monotonous manner with the received dose. Performing chemical analysis with secondary ion spectroscopy measurements (SIMS), we find that our samples were likely contaminated by C injection during the irradiation. Employing an object kinetic Monte Carlo (OKMC) model for microstructure evolution, we demonstrate that the C injection is the likely factor explaining the evolution of loops number density. Our findings highlight the importance of the well-known issue of C injection during ion irradiation experiments, and demonstrate how OKMC models can help to rationalize this effect.
Original language | English |
---|---|
Article number | 151808 |
Number of pages | 8 |
Journal | Journal of Nuclear Materials |
Volume | 527 |
DOIs | |
Publication status | Published - 2019 |
MoE publication type | A1 Journal article-refereed |
Funding
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053.