The Integrin Tail: A Tale of Cell Motility and Division: Dissertation

Saara Tuomi

Research output: ThesisDissertationCollection of Articles

14 Citations (Scopus)

Abstract

Integrin transmembrane receptor functions are regulated by adaptor molecules binding to their α and β subunit intracellular domains, or tails, thus affecting integrin traffic and adhesion during e.g. cell motility. Interestingly, many cellular proteins function in both cell motility and cell division, thus raising the possibility that integrins might be involved in regulating the cell cycle. A thorough understanding of cell division is essential in cell biology and in human malignancies. It is well established that failures to complete cell cycle can give rise to genetically unstable cells with tumorigenic properties. Transformed cells promote the disruption of intercellular adhesions such as tight junctions, and this correlates with the onset of cell motility, invasion and unfavorable prognosis in cancer.

In this study, we analyzed integrin regulation, mediated by adaptor binding to the α subunit tail, during cell motility and cell division. We revealed a novel molecular mechanism by which Rab21, through association with the integrin alpha subunits, drives integrin endosomal traffic during mitotic phases. In addition, we found indications for this finding in vivo, as RAB21 gene deletions were mapped in ovarian and prostate cancer samples. Importantly, the multinucleated phenotype of cultured ovarian cancer cells could be reverted by Rab21 overexpression. In this thesis work, we also show how the tight junction protein ZO-1 unexpectedly interacts with the α5 integrin cytoplasmic domain in the lamellipodia to promote cell motility and at the cleavage furrow to support separation of the daughter cells. The α5-ZO-1 complex formation was dependent on PKCε, which regulates ZO-1 phosphorylation and its subcellular localization. In addition, by an in situ detection method, we showed that a subset of metastatic human lung cancers expressed the α5β1-ZO-1 complex.

Taken together, we were able to identify new molecular pathways that regulate integrin functions in an alpha tail-mediated fashion. These findings firmly suggest that genetic alterations in integrin traffic may lead to progression of tumorigenesis as a result of failed cell division. Also, the interplay of integrins and ZO-1 in forming spatially regulated adhesive structures broadens our view of crosstalk between pathways and distinct adhesive structures that can be involved in cancer cell biology.
Original languageEnglish
QualificationDoctor Degree
Awarding Institution
  • University of Turku
Supervisors/Advisors
  • Ivaska, Johanna, Supervisor, External person
Place of PublicationTurku
Publisher
Print ISBNs978-951-29-4437-8
Electronic ISBNs978-951-29-4438-5
Publication statusPublished - 2010
MoE publication typeG5 Doctoral dissertation (article)

Fingerprint

Integrins
Cell Division
Cell Movement
Tail
Adhesives
Ovarian Neoplasms
Cell Biology
Cell Cycle
Zonula Occludens-1 Protein
Integrin alpha Chains
Neoplasms
Pseudopodia
Cell Separation
Tight Junctions
Gene Deletion
Lung Neoplasms
Prostatic Neoplasms
Carcinogenesis
Phosphorylation
Phenotype

Keywords

  • Integrin
  • cell adhesion
  • tight junction
  • ZO-1
  • Rab21
  • cell motility
  • cell division

Cite this

Tuomi, S. (2010). The Integrin Tail: A Tale of Cell Motility and Division: Dissertation. Turku: University of Turku.
Tuomi, Saara. / The Integrin Tail : A Tale of Cell Motility and Division: Dissertation. Turku : University of Turku, 2010. 100 p.
@phdthesis{49f318b44eaa4c6886dbe78249e5199b,
title = "The Integrin Tail: A Tale of Cell Motility and Division: Dissertation",
abstract = "Integrin transmembrane receptor functions are regulated by adaptor molecules binding to their α and β subunit intracellular domains, or tails, thus affecting integrin traffic and adhesion during e.g. cell motility. Interestingly, many cellular proteins function in both cell motility and cell division, thus raising the possibility that integrins might be involved in regulating the cell cycle. A thorough understanding of cell division is essential in cell biology and in human malignancies. It is well established that failures to complete cell cycle can give rise to genetically unstable cells with tumorigenic properties. Transformed cells promote the disruption of intercellular adhesions such as tight junctions, and this correlates with the onset of cell motility, invasion and unfavorable prognosis in cancer. In this study, we analyzed integrin regulation, mediated by adaptor binding to the α subunit tail, during cell motility and cell division. We revealed a novel molecular mechanism by which Rab21, through association with the integrin alpha subunits, drives integrin endosomal traffic during mitotic phases. In addition, we found indications for this finding in vivo, as RAB21 gene deletions were mapped in ovarian and prostate cancer samples. Importantly, the multinucleated phenotype of cultured ovarian cancer cells could be reverted by Rab21 overexpression. In this thesis work, we also show how the tight junction protein ZO-1 unexpectedly interacts with the α5 integrin cytoplasmic domain in the lamellipodia to promote cell motility and at the cleavage furrow to support separation of the daughter cells. The α5-ZO-1 complex formation was dependent on PKCε, which regulates ZO-1 phosphorylation and its subcellular localization. In addition, by an in situ detection method, we showed that a subset of metastatic human lung cancers expressed the α5β1-ZO-1 complex. Taken together, we were able to identify new molecular pathways that regulate integrin functions in an alpha tail-mediated fashion. These findings firmly suggest that genetic alterations in integrin traffic may lead to progression of tumorigenesis as a result of failed cell division. Also, the interplay of integrins and ZO-1 in forming spatially regulated adhesive structures broadens our view of crosstalk between pathways and distinct adhesive structures that can be involved in cancer cell biology.",
keywords = "Integrin, cell adhesion, tight junction, ZO-1, Rab21, cell motility, cell division",
author = "Saara Tuomi",
note = "TK403",
year = "2010",
language = "English",
isbn = "978-951-29-4437-8",
series = "Annales Universitatis Turkuensis Series D: Medica-Odontologica",
publisher = "University of Turku",
address = "Finland",
school = "University of Turku",

}

Tuomi, S 2010, 'The Integrin Tail: A Tale of Cell Motility and Division: Dissertation', Doctor Degree, University of Turku, Turku.

The Integrin Tail : A Tale of Cell Motility and Division: Dissertation. / Tuomi, Saara.

Turku : University of Turku, 2010. 100 p.

Research output: ThesisDissertationCollection of Articles

TY - THES

T1 - The Integrin Tail

T2 - A Tale of Cell Motility and Division: Dissertation

AU - Tuomi, Saara

N1 - TK403

PY - 2010

Y1 - 2010

N2 - Integrin transmembrane receptor functions are regulated by adaptor molecules binding to their α and β subunit intracellular domains, or tails, thus affecting integrin traffic and adhesion during e.g. cell motility. Interestingly, many cellular proteins function in both cell motility and cell division, thus raising the possibility that integrins might be involved in regulating the cell cycle. A thorough understanding of cell division is essential in cell biology and in human malignancies. It is well established that failures to complete cell cycle can give rise to genetically unstable cells with tumorigenic properties. Transformed cells promote the disruption of intercellular adhesions such as tight junctions, and this correlates with the onset of cell motility, invasion and unfavorable prognosis in cancer. In this study, we analyzed integrin regulation, mediated by adaptor binding to the α subunit tail, during cell motility and cell division. We revealed a novel molecular mechanism by which Rab21, through association with the integrin alpha subunits, drives integrin endosomal traffic during mitotic phases. In addition, we found indications for this finding in vivo, as RAB21 gene deletions were mapped in ovarian and prostate cancer samples. Importantly, the multinucleated phenotype of cultured ovarian cancer cells could be reverted by Rab21 overexpression. In this thesis work, we also show how the tight junction protein ZO-1 unexpectedly interacts with the α5 integrin cytoplasmic domain in the lamellipodia to promote cell motility and at the cleavage furrow to support separation of the daughter cells. The α5-ZO-1 complex formation was dependent on PKCε, which regulates ZO-1 phosphorylation and its subcellular localization. In addition, by an in situ detection method, we showed that a subset of metastatic human lung cancers expressed the α5β1-ZO-1 complex. Taken together, we were able to identify new molecular pathways that regulate integrin functions in an alpha tail-mediated fashion. These findings firmly suggest that genetic alterations in integrin traffic may lead to progression of tumorigenesis as a result of failed cell division. Also, the interplay of integrins and ZO-1 in forming spatially regulated adhesive structures broadens our view of crosstalk between pathways and distinct adhesive structures that can be involved in cancer cell biology.

AB - Integrin transmembrane receptor functions are regulated by adaptor molecules binding to their α and β subunit intracellular domains, or tails, thus affecting integrin traffic and adhesion during e.g. cell motility. Interestingly, many cellular proteins function in both cell motility and cell division, thus raising the possibility that integrins might be involved in regulating the cell cycle. A thorough understanding of cell division is essential in cell biology and in human malignancies. It is well established that failures to complete cell cycle can give rise to genetically unstable cells with tumorigenic properties. Transformed cells promote the disruption of intercellular adhesions such as tight junctions, and this correlates with the onset of cell motility, invasion and unfavorable prognosis in cancer. In this study, we analyzed integrin regulation, mediated by adaptor binding to the α subunit tail, during cell motility and cell division. We revealed a novel molecular mechanism by which Rab21, through association with the integrin alpha subunits, drives integrin endosomal traffic during mitotic phases. In addition, we found indications for this finding in vivo, as RAB21 gene deletions were mapped in ovarian and prostate cancer samples. Importantly, the multinucleated phenotype of cultured ovarian cancer cells could be reverted by Rab21 overexpression. In this thesis work, we also show how the tight junction protein ZO-1 unexpectedly interacts with the α5 integrin cytoplasmic domain in the lamellipodia to promote cell motility and at the cleavage furrow to support separation of the daughter cells. The α5-ZO-1 complex formation was dependent on PKCε, which regulates ZO-1 phosphorylation and its subcellular localization. In addition, by an in situ detection method, we showed that a subset of metastatic human lung cancers expressed the α5β1-ZO-1 complex. Taken together, we were able to identify new molecular pathways that regulate integrin functions in an alpha tail-mediated fashion. These findings firmly suggest that genetic alterations in integrin traffic may lead to progression of tumorigenesis as a result of failed cell division. Also, the interplay of integrins and ZO-1 in forming spatially regulated adhesive structures broadens our view of crosstalk between pathways and distinct adhesive structures that can be involved in cancer cell biology.

KW - Integrin

KW - cell adhesion

KW - tight junction

KW - ZO-1

KW - Rab21

KW - cell motility

KW - cell division

M3 - Dissertation

SN - 978-951-29-4437-8

T3 - Annales Universitatis Turkuensis Series D: Medica-Odontologica

PB - University of Turku

CY - Turku

ER -

Tuomi S. The Integrin Tail: A Tale of Cell Motility and Division: Dissertation. Turku: University of Turku, 2010. 100 p.