Abstract
The intermolecular hydroaminoalkylation of unactivated alkenes and vinyl arenes with secondary amines occurs readily in the presence of tantalum and niobium binaphtholate catalysts with high regio- and enantioselectivity (up to 98% ee). Mechanistic studies have been conducted in order to determine the kinetic order of the reaction in all reagents and elucidate the rate- and stereodetermining steps. The effects of substrate steric and electronic properties on the overall reaction rate have been evaluated. The reaction is first order in amine and the catalyst, while exhibiting saturation in alkene at high alkene concentration. Unproductive reaction events including reversible amine binding and arene C-H activation have been observed. The formation of the metallaaziridine is a fast reversible nondissociative process and the overall reaction rate is limited either by amide exchange or alkene insertion, as supported by reaction kinetics, kinetic isotope effects, and isotopic labeling studies. These results suggest that the catalytic activity can be enhanced by employing a more electron-deficient ligand backbone.
Original language | English |
---|---|
Pages (from-to) | 3300-3311 |
Number of pages | 12 |
Journal | Journal of the American Chemical Society |
Volume | 134 |
Issue number | 6 |
DOIs | |
Publication status | Published - 15 Feb 2012 |
MoE publication type | A1 Journal article-refereed |