The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed

J. Zhang (Corresponding Author), Matti Siika-aho, Maija Tenkanen, Liisa Viikari

Research output: Contribution to journalArticleScientificpeer-review

85 Citations (Scopus)

Abstract

Background: Due to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to significantly improve the performance of cellulases and to increase cellulose hydrolysis by solubilizing xylans in lignocellulosic materials. The goal of this work was to investigate the effect of acetyl xylan esterase (AXE) originating from Trichoderma reesei on xylan solubilization and enzymatic hydrolysis of cellulose.

Results: The solubilization of xylan in pretreated wheat straw and giant reed (Arundo donax) by xylanolytic enzymes and the impact of the sequential or simultaneous solubilization of xylan on the hydrolysis of cellulose by purified enzymes were investigated. The results showed that the removal of acetyl groups in xylan by AXE increased the accessibility of xylan to xylanase and improved the hydrolysis of xylan in pretreated wheat straw and giant reed. Solubilization of xylan led to an increased accessibility of cellulose to cellulases and thereby increased the hydrolysis extent of cellulose. A clear synergistic effect between cellulases and xylanolytic enzymes was observed. The highest hydrolysis yield of cellulose was obtained with a simultaneous use of cellulases, xylanase and AXE, indicating the presence of acetylated xylan within the cellulose matrix. Acetylated xylobiose and acetylated xylotriose were produced from xylan without AXE, as confirmed by atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry.

Conclusions: The results in this paper demonstrate that supplementation of xylanase with AXE enhances the solubilization of xylan to some extent and, consequently, increases the subsequent hydrolysis of cellulose. The highest hydrolysis yield was, however, obtained by simultaneous hydrolysis of xylan and cellulose, indicating a layered structure of cellulose and xylan chains in the cell wall substrate. AXE has an important role in the hydrolysis of lignocellulosic materials containing acetylated xylan.
Original languageEnglish
JournalBiotechnology for Biofuels
Volume4
Issue number60
DOIs
Publication statusPublished - 2011
MoE publication typeA1 Journal article-refereed

Fingerprint

acetylxylan esterase
Xylans
Enzymatic hydrolysis
Straw
solubilization
straw
Triticum
hydrolysis
Hydrolysis
cellulose
wheat
Cellulose
Cellulases
enzyme
accessibility
Enzymes
reed
Esterases

Cite this

@article{6f00e4c606d74d51974393354cb58a70,
title = "The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed",
abstract = "Background: Due to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to significantly improve the performance of cellulases and to increase cellulose hydrolysis by solubilizing xylans in lignocellulosic materials. The goal of this work was to investigate the effect of acetyl xylan esterase (AXE) originating from Trichoderma reesei on xylan solubilization and enzymatic hydrolysis of cellulose.Results: The solubilization of xylan in pretreated wheat straw and giant reed (Arundo donax) by xylanolytic enzymes and the impact of the sequential or simultaneous solubilization of xylan on the hydrolysis of cellulose by purified enzymes were investigated. The results showed that the removal of acetyl groups in xylan by AXE increased the accessibility of xylan to xylanase and improved the hydrolysis of xylan in pretreated wheat straw and giant reed. Solubilization of xylan led to an increased accessibility of cellulose to cellulases and thereby increased the hydrolysis extent of cellulose. A clear synergistic effect between cellulases and xylanolytic enzymes was observed. The highest hydrolysis yield of cellulose was obtained with a simultaneous use of cellulases, xylanase and AXE, indicating the presence of acetylated xylan within the cellulose matrix. Acetylated xylobiose and acetylated xylotriose were produced from xylan without AXE, as confirmed by atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry.Conclusions: The results in this paper demonstrate that supplementation of xylanase with AXE enhances the solubilization of xylan to some extent and, consequently, increases the subsequent hydrolysis of cellulose. The highest hydrolysis yield was, however, obtained by simultaneous hydrolysis of xylan and cellulose, indicating a layered structure of cellulose and xylan chains in the cell wall substrate. AXE has an important role in the hydrolysis of lignocellulosic materials containing acetylated xylan.",
author = "J. Zhang and Matti Siika-aho and Maija Tenkanen and Liisa Viikari",
year = "2011",
doi = "10.1186/1754-6834-4-60",
language = "English",
volume = "4",
journal = "Biotechnology for Biofuels",
issn = "1754-6834",
number = "60",

}

The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. / Zhang, J. (Corresponding Author); Siika-aho, Matti; Tenkanen, Maija; Viikari, Liisa.

In: Biotechnology for Biofuels, Vol. 4, No. 60, 2011.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed

AU - Zhang, J.

AU - Siika-aho, Matti

AU - Tenkanen, Maija

AU - Viikari, Liisa

PY - 2011

Y1 - 2011

N2 - Background: Due to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to significantly improve the performance of cellulases and to increase cellulose hydrolysis by solubilizing xylans in lignocellulosic materials. The goal of this work was to investigate the effect of acetyl xylan esterase (AXE) originating from Trichoderma reesei on xylan solubilization and enzymatic hydrolysis of cellulose.Results: The solubilization of xylan in pretreated wheat straw and giant reed (Arundo donax) by xylanolytic enzymes and the impact of the sequential or simultaneous solubilization of xylan on the hydrolysis of cellulose by purified enzymes were investigated. The results showed that the removal of acetyl groups in xylan by AXE increased the accessibility of xylan to xylanase and improved the hydrolysis of xylan in pretreated wheat straw and giant reed. Solubilization of xylan led to an increased accessibility of cellulose to cellulases and thereby increased the hydrolysis extent of cellulose. A clear synergistic effect between cellulases and xylanolytic enzymes was observed. The highest hydrolysis yield of cellulose was obtained with a simultaneous use of cellulases, xylanase and AXE, indicating the presence of acetylated xylan within the cellulose matrix. Acetylated xylobiose and acetylated xylotriose were produced from xylan without AXE, as confirmed by atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry.Conclusions: The results in this paper demonstrate that supplementation of xylanase with AXE enhances the solubilization of xylan to some extent and, consequently, increases the subsequent hydrolysis of cellulose. The highest hydrolysis yield was, however, obtained by simultaneous hydrolysis of xylan and cellulose, indicating a layered structure of cellulose and xylan chains in the cell wall substrate. AXE has an important role in the hydrolysis of lignocellulosic materials containing acetylated xylan.

AB - Background: Due to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to significantly improve the performance of cellulases and to increase cellulose hydrolysis by solubilizing xylans in lignocellulosic materials. The goal of this work was to investigate the effect of acetyl xylan esterase (AXE) originating from Trichoderma reesei on xylan solubilization and enzymatic hydrolysis of cellulose.Results: The solubilization of xylan in pretreated wheat straw and giant reed (Arundo donax) by xylanolytic enzymes and the impact of the sequential or simultaneous solubilization of xylan on the hydrolysis of cellulose by purified enzymes were investigated. The results showed that the removal of acetyl groups in xylan by AXE increased the accessibility of xylan to xylanase and improved the hydrolysis of xylan in pretreated wheat straw and giant reed. Solubilization of xylan led to an increased accessibility of cellulose to cellulases and thereby increased the hydrolysis extent of cellulose. A clear synergistic effect between cellulases and xylanolytic enzymes was observed. The highest hydrolysis yield of cellulose was obtained with a simultaneous use of cellulases, xylanase and AXE, indicating the presence of acetylated xylan within the cellulose matrix. Acetylated xylobiose and acetylated xylotriose were produced from xylan without AXE, as confirmed by atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry.Conclusions: The results in this paper demonstrate that supplementation of xylanase with AXE enhances the solubilization of xylan to some extent and, consequently, increases the subsequent hydrolysis of cellulose. The highest hydrolysis yield was, however, obtained by simultaneous hydrolysis of xylan and cellulose, indicating a layered structure of cellulose and xylan chains in the cell wall substrate. AXE has an important role in the hydrolysis of lignocellulosic materials containing acetylated xylan.

U2 - 10.1186/1754-6834-4-60

DO - 10.1186/1754-6834-4-60

M3 - Article

VL - 4

JO - Biotechnology for Biofuels

JF - Biotechnology for Biofuels

SN - 1754-6834

IS - 60

ER -