The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures

Alexandr V. Talyzin, Thomas Hausmaninger, Shujie You, Tamás Szabó

Research output: Contribution to journalArticleScientificpeer-review

101 Citations (Scopus)

Abstract

The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of “negative thermal expansion” and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes.
Original languageEnglish
Pages (from-to)272-281
JournalNanoscale
Volume6
DOIs
Publication statusPublished - 14 Oct 2014
MoE publication typeA1 Journal article-refereed

    Fingerprint

Cite this