Thermal energy harvesting

M. Mouis, E. Chávez-Ángel, C. Sotomayor-Torres, F. Alzina, M.V. Costache, A.G. Nassiopoulou, K. Valalaki, E. Hourdakis, S.O. Valenzuela, B., Viala, D. Zakharov, A. Shchepetov, J. Ahopelto

Research output: Chapter in Book/Report/Conference proceedingChapter or book articleProfessional

4 Citations (Scopus)

Abstract

This chapter presents some recent advances in the field of thermal energy harvesting, starting with thermoelectric energy harvesting, with a focus on the prospects of materials nanostructuration. Research toward alternative solutions will also be presented. Thermoelectric (TE) conversion is the most straightforward method to convert thermal energy into electrical energy, able to power such systems as autonomous sensor networks. Raman thermometry offers particular advantages for a fast and contactless determination of the thermal conductivity. The highly porous Si material is nanostructured and has the properties of confined systems, including a very low thermal conductivity. The chapter explores an alternative route for thermal energy harvesting (TEH) with composites using the mechanical coupling between a thermal shape memory alloy (SMA) and a piezoelectric material.
Original languageEnglish
Title of host publicationBeyond-CMOS Nanodevices 1
PublisherWiley
Pages135-219
ISBN (Print)9781848216549, 9781118984772
DOIs
Publication statusPublished - 2014
MoE publication typeD2 Article in professional manuals or guides or professional information systems or text book material

Fingerprint

Energy harvesting
Thermal energy
Thermal conductivity
Piezoelectric materials
Shape memory effect
Nanostructured materials
Sensor networks
Composite materials

Keywords

  • piezoelectric materials
  • porous silicon
  • Raman thermometry
  • thermal energy harvesting (TEH)
  • thermal shape memory alloy (SMA)
  • thermoelectric (TE) conversion

Cite this

Mouis, M., Chávez-Ángel, E., Sotomayor-Torres, C., Alzina, F., Costache, M. V., Nassiopoulou, A. G., ... Ahopelto, J. (2014). Thermal energy harvesting. In Beyond-CMOS Nanodevices 1 (pp. 135-219). Wiley. https://doi.org/10.1002/9781118984772.ch7
Mouis, M. ; Chávez-Ángel, E. ; Sotomayor-Torres, C. ; Alzina, F. ; Costache, M.V. ; Nassiopoulou, A.G. ; Valalaki, K. ; Hourdakis, E. ; Valenzuela, S.O. ; Viala, B., ; Zakharov, D. ; Shchepetov, A. ; Ahopelto, J. / Thermal energy harvesting. Beyond-CMOS Nanodevices 1. Wiley, 2014. pp. 135-219
@inbook{364c01552e154ac2bfbd69771a2101f1,
title = "Thermal energy harvesting",
abstract = "This chapter presents some recent advances in the field of thermal energy harvesting, starting with thermoelectric energy harvesting, with a focus on the prospects of materials nanostructuration. Research toward alternative solutions will also be presented. Thermoelectric (TE) conversion is the most straightforward method to convert thermal energy into electrical energy, able to power such systems as autonomous sensor networks. Raman thermometry offers particular advantages for a fast and contactless determination of the thermal conductivity. The highly porous Si material is nanostructured and has the properties of confined systems, including a very low thermal conductivity. The chapter explores an alternative route for thermal energy harvesting (TEH) with composites using the mechanical coupling between a thermal shape memory alloy (SMA) and a piezoelectric material.",
keywords = "piezoelectric materials, porous silicon, Raman thermometry, thermal energy harvesting (TEH), thermal shape memory alloy (SMA), thermoelectric (TE) conversion",
author = "M. Mouis and E. Ch{\'a}vez-{\'A}ngel and C. Sotomayor-Torres and F. Alzina and M.V. Costache and A.G. Nassiopoulou and K. Valalaki and E. Hourdakis and S.O. Valenzuela and B., Viala and D. Zakharov and A. Shchepetov and J. Ahopelto",
year = "2014",
doi = "10.1002/9781118984772.ch7",
language = "English",
isbn = "9781848216549",
pages = "135--219",
booktitle = "Beyond-CMOS Nanodevices 1",
publisher = "Wiley",
address = "United States",

}

Mouis, M, Chávez-Ángel, E, Sotomayor-Torres, C, Alzina, F, Costache, MV, Nassiopoulou, AG, Valalaki, K, Hourdakis, E, Valenzuela, SO, Viala, B, Zakharov, D, Shchepetov, A & Ahopelto, J 2014, Thermal energy harvesting. in Beyond-CMOS Nanodevices 1. Wiley, pp. 135-219. https://doi.org/10.1002/9781118984772.ch7

Thermal energy harvesting. / Mouis, M.; Chávez-Ángel, E.; Sotomayor-Torres, C.; Alzina, F.; Costache, M.V.; Nassiopoulou, A.G.; Valalaki, K.; Hourdakis, E.; Valenzuela, S.O.; Viala, B.,; Zakharov, D.; Shchepetov, A.; Ahopelto, J.

Beyond-CMOS Nanodevices 1. Wiley, 2014. p. 135-219.

Research output: Chapter in Book/Report/Conference proceedingChapter or book articleProfessional

TY - CHAP

T1 - Thermal energy harvesting

AU - Mouis, M.

AU - Chávez-Ángel, E.

AU - Sotomayor-Torres, C.

AU - Alzina, F.

AU - Costache, M.V.

AU - Nassiopoulou, A.G.

AU - Valalaki, K.

AU - Hourdakis, E.

AU - Valenzuela, S.O.

AU - Viala, B.,

AU - Zakharov, D.

AU - Shchepetov, A.

AU - Ahopelto, J.

PY - 2014

Y1 - 2014

N2 - This chapter presents some recent advances in the field of thermal energy harvesting, starting with thermoelectric energy harvesting, with a focus on the prospects of materials nanostructuration. Research toward alternative solutions will also be presented. Thermoelectric (TE) conversion is the most straightforward method to convert thermal energy into electrical energy, able to power such systems as autonomous sensor networks. Raman thermometry offers particular advantages for a fast and contactless determination of the thermal conductivity. The highly porous Si material is nanostructured and has the properties of confined systems, including a very low thermal conductivity. The chapter explores an alternative route for thermal energy harvesting (TEH) with composites using the mechanical coupling between a thermal shape memory alloy (SMA) and a piezoelectric material.

AB - This chapter presents some recent advances in the field of thermal energy harvesting, starting with thermoelectric energy harvesting, with a focus on the prospects of materials nanostructuration. Research toward alternative solutions will also be presented. Thermoelectric (TE) conversion is the most straightforward method to convert thermal energy into electrical energy, able to power such systems as autonomous sensor networks. Raman thermometry offers particular advantages for a fast and contactless determination of the thermal conductivity. The highly porous Si material is nanostructured and has the properties of confined systems, including a very low thermal conductivity. The chapter explores an alternative route for thermal energy harvesting (TEH) with composites using the mechanical coupling between a thermal shape memory alloy (SMA) and a piezoelectric material.

KW - piezoelectric materials

KW - porous silicon

KW - Raman thermometry

KW - thermal energy harvesting (TEH)

KW - thermal shape memory alloy (SMA)

KW - thermoelectric (TE) conversion

U2 - 10.1002/9781118984772.ch7

DO - 10.1002/9781118984772.ch7

M3 - Chapter or book article

SN - 9781848216549

SN - 9781118984772

SP - 135

EP - 219

BT - Beyond-CMOS Nanodevices 1

PB - Wiley

ER -

Mouis M, Chávez-Ángel E, Sotomayor-Torres C, Alzina F, Costache MV, Nassiopoulou AG et al. Thermal energy harvesting. In Beyond-CMOS Nanodevices 1. Wiley. 2014. p. 135-219 https://doi.org/10.1002/9781118984772.ch7