Thermal energy harvesting

M. Mouis, E. Chávez-Ángel, C. Sotomayor-Torres, F. Alzina, M.V. Costache, A.G. Nassiopoulou, K. Valalaki, E. Hourdakis, S.O. Valenzuela, B., Viala, D. Zakharov, A. Shchepetov, J. Ahopelto

    Research output: Chapter in Book/Report/Conference proceedingChapter or book articleProfessional

    4 Citations (Scopus)

    Abstract

    This chapter presents some recent advances in the field of thermal energy harvesting, starting with thermoelectric energy harvesting, with a focus on the prospects of materials nanostructuration. Research toward alternative solutions will also be presented. Thermoelectric (TE) conversion is the most straightforward method to convert thermal energy into electrical energy, able to power such systems as autonomous sensor networks. Raman thermometry offers particular advantages for a fast and contactless determination of the thermal conductivity. The highly porous Si material is nanostructured and has the properties of confined systems, including a very low thermal conductivity. The chapter explores an alternative route for thermal energy harvesting (TEH) with composites using the mechanical coupling between a thermal shape memory alloy (SMA) and a piezoelectric material.
    Original languageEnglish
    Title of host publicationBeyond-CMOS Nanodevices 1
    PublisherWiley
    Pages135-219
    ISBN (Print)9781848216549, 9781118984772
    DOIs
    Publication statusPublished - 2014
    MoE publication typeD2 Article in professional manuals or guides or professional information systems or text book material

    Fingerprint

    Energy harvesting
    Thermal energy
    Thermal conductivity
    Piezoelectric materials
    Shape memory effect
    Nanostructured materials
    Sensor networks
    Composite materials

    Keywords

    • piezoelectric materials
    • porous silicon
    • Raman thermometry
    • thermal energy harvesting (TEH)
    • thermal shape memory alloy (SMA)
    • thermoelectric (TE) conversion

    Cite this

    Mouis, M., Chávez-Ángel, E., Sotomayor-Torres, C., Alzina, F., Costache, M. V., Nassiopoulou, A. G., ... Ahopelto, J. (2014). Thermal energy harvesting. In Beyond-CMOS Nanodevices 1 (pp. 135-219). Wiley. https://doi.org/10.1002/9781118984772.ch7
    Mouis, M. ; Chávez-Ángel, E. ; Sotomayor-Torres, C. ; Alzina, F. ; Costache, M.V. ; Nassiopoulou, A.G. ; Valalaki, K. ; Hourdakis, E. ; Valenzuela, S.O. ; Viala, B., ; Zakharov, D. ; Shchepetov, A. ; Ahopelto, J. / Thermal energy harvesting. Beyond-CMOS Nanodevices 1. Wiley, 2014. pp. 135-219
    @inbook{364c01552e154ac2bfbd69771a2101f1,
    title = "Thermal energy harvesting",
    abstract = "This chapter presents some recent advances in the field of thermal energy harvesting, starting with thermoelectric energy harvesting, with a focus on the prospects of materials nanostructuration. Research toward alternative solutions will also be presented. Thermoelectric (TE) conversion is the most straightforward method to convert thermal energy into electrical energy, able to power such systems as autonomous sensor networks. Raman thermometry offers particular advantages for a fast and contactless determination of the thermal conductivity. The highly porous Si material is nanostructured and has the properties of confined systems, including a very low thermal conductivity. The chapter explores an alternative route for thermal energy harvesting (TEH) with composites using the mechanical coupling between a thermal shape memory alloy (SMA) and a piezoelectric material.",
    keywords = "piezoelectric materials, porous silicon, Raman thermometry, thermal energy harvesting (TEH), thermal shape memory alloy (SMA), thermoelectric (TE) conversion",
    author = "M. Mouis and E. Ch{\'a}vez-{\'A}ngel and C. Sotomayor-Torres and F. Alzina and M.V. Costache and A.G. Nassiopoulou and K. Valalaki and E. Hourdakis and S.O. Valenzuela and B., Viala and D. Zakharov and A. Shchepetov and J. Ahopelto",
    year = "2014",
    doi = "10.1002/9781118984772.ch7",
    language = "English",
    isbn = "9781848216549",
    pages = "135--219",
    booktitle = "Beyond-CMOS Nanodevices 1",
    publisher = "Wiley",
    address = "United States",

    }

    Mouis, M, Chávez-Ángel, E, Sotomayor-Torres, C, Alzina, F, Costache, MV, Nassiopoulou, AG, Valalaki, K, Hourdakis, E, Valenzuela, SO, Viala, B, Zakharov, D, Shchepetov, A & Ahopelto, J 2014, Thermal energy harvesting. in Beyond-CMOS Nanodevices 1. Wiley, pp. 135-219. https://doi.org/10.1002/9781118984772.ch7

    Thermal energy harvesting. / Mouis, M.; Chávez-Ángel, E.; Sotomayor-Torres, C.; Alzina, F.; Costache, M.V.; Nassiopoulou, A.G.; Valalaki, K.; Hourdakis, E.; Valenzuela, S.O.; Viala, B.,; Zakharov, D.; Shchepetov, A.; Ahopelto, J.

    Beyond-CMOS Nanodevices 1. Wiley, 2014. p. 135-219.

    Research output: Chapter in Book/Report/Conference proceedingChapter or book articleProfessional

    TY - CHAP

    T1 - Thermal energy harvesting

    AU - Mouis, M.

    AU - Chávez-Ángel, E.

    AU - Sotomayor-Torres, C.

    AU - Alzina, F.

    AU - Costache, M.V.

    AU - Nassiopoulou, A.G.

    AU - Valalaki, K.

    AU - Hourdakis, E.

    AU - Valenzuela, S.O.

    AU - Viala, B.,

    AU - Zakharov, D.

    AU - Shchepetov, A.

    AU - Ahopelto, J.

    PY - 2014

    Y1 - 2014

    N2 - This chapter presents some recent advances in the field of thermal energy harvesting, starting with thermoelectric energy harvesting, with a focus on the prospects of materials nanostructuration. Research toward alternative solutions will also be presented. Thermoelectric (TE) conversion is the most straightforward method to convert thermal energy into electrical energy, able to power such systems as autonomous sensor networks. Raman thermometry offers particular advantages for a fast and contactless determination of the thermal conductivity. The highly porous Si material is nanostructured and has the properties of confined systems, including a very low thermal conductivity. The chapter explores an alternative route for thermal energy harvesting (TEH) with composites using the mechanical coupling between a thermal shape memory alloy (SMA) and a piezoelectric material.

    AB - This chapter presents some recent advances in the field of thermal energy harvesting, starting with thermoelectric energy harvesting, with a focus on the prospects of materials nanostructuration. Research toward alternative solutions will also be presented. Thermoelectric (TE) conversion is the most straightforward method to convert thermal energy into electrical energy, able to power such systems as autonomous sensor networks. Raman thermometry offers particular advantages for a fast and contactless determination of the thermal conductivity. The highly porous Si material is nanostructured and has the properties of confined systems, including a very low thermal conductivity. The chapter explores an alternative route for thermal energy harvesting (TEH) with composites using the mechanical coupling between a thermal shape memory alloy (SMA) and a piezoelectric material.

    KW - piezoelectric materials

    KW - porous silicon

    KW - Raman thermometry

    KW - thermal energy harvesting (TEH)

    KW - thermal shape memory alloy (SMA)

    KW - thermoelectric (TE) conversion

    U2 - 10.1002/9781118984772.ch7

    DO - 10.1002/9781118984772.ch7

    M3 - Chapter or book article

    SN - 9781848216549

    SN - 9781118984772

    SP - 135

    EP - 219

    BT - Beyond-CMOS Nanodevices 1

    PB - Wiley

    ER -

    Mouis M, Chávez-Ángel E, Sotomayor-Torres C, Alzina F, Costache MV, Nassiopoulou AG et al. Thermal energy harvesting. In Beyond-CMOS Nanodevices 1. Wiley. 2014. p. 135-219 https://doi.org/10.1002/9781118984772.ch7