TY - JOUR
T1 - Thermal transport of helium-3 in a strongly confining channel
AU - Lotnyk, D.
AU - Eyal, A.
AU - Zhelev, N.
AU - Abhilash, T. S.
AU - Smith, E. N.
AU - Terilli, M.
AU - Wilson, J.
AU - Mueller, E.
AU - Einzel, D.
AU - Saunders, J.
AU - Parpia, J. M.
PY - 2020/9/24
Y1 - 2020/9/24
N2 - The investigation of transport properties in normal liquid helium-3 and its topological superfluid phases provides insights into related phenomena in electron fluids, topological materials, and putative topological superconductors. It relies on the measurement of mass, heat, and spin currents, due to system neutrality. Of particular interest is transport in strongly confining channels of height approaching the superfluid coherence length, to enhance the relative contribution of surface excitations, and suppress hydrodynamic counterflow. Here we report on the thermal conduction of helium-3 in a 1.1 μm high channel. In the normal state we observe a diffusive thermal conductivity that is approximately temperature independent, consistent with interference of bulk and boundary scattering. In the superfluid, the thermal conductivity is only weakly temperature dependent, requiring detailed theoretical analysis. An anomalous thermal response is detected in the superfluid which we propose arises from the emission of a flux of surface excitations from the channel.
AB - The investigation of transport properties in normal liquid helium-3 and its topological superfluid phases provides insights into related phenomena in electron fluids, topological materials, and putative topological superconductors. It relies on the measurement of mass, heat, and spin currents, due to system neutrality. Of particular interest is transport in strongly confining channels of height approaching the superfluid coherence length, to enhance the relative contribution of surface excitations, and suppress hydrodynamic counterflow. Here we report on the thermal conduction of helium-3 in a 1.1 μm high channel. In the normal state we observe a diffusive thermal conductivity that is approximately temperature independent, consistent with interference of bulk and boundary scattering. In the superfluid, the thermal conductivity is only weakly temperature dependent, requiring detailed theoretical analysis. An anomalous thermal response is detected in the superfluid which we propose arises from the emission of a flux of surface excitations from the channel.
UR - http://www.scopus.com/inward/record.url?scp=85091442102&partnerID=8YFLogxK
U2 - 10.1038/s41467-020-18662-8
DO - 10.1038/s41467-020-18662-8
M3 - Article
C2 - 32973182
SN - 2041-1723
VL - 11
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 4843
ER -