TY - JOUR
T1 - Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids
AU - Xie, Haibo
AU - King, Alistair
AU - Kilpelainen, Ilkka
AU - Granstrom, Mari
AU - Argyropoulos, Dimitris S.
PY - 2007/12
Y1 - 2007/12
N2 - Homogenous acylation and carbanilation reactions of wood-based lignocellulosic materials have been investigated in ionic liquids. We have found that highly substituted lignocellulosic esters can be obtained under mild conditions (2 h, 70°C) by reacting wood dissolved in ionic liquids with acetyl chloride, benzoyl chloride, and acetic anhydride in the presence of pyridine. In the absence of pyridine, extensive degradation of the wood components was found to occur. Highly substituted carbanilated lignocellulosic material was also obtained in the absence of base in ionic liquid. These chemical modifications were confirmed by infrared spectroscopy, 1H NMR, and quantitative 31P NMR of the resulting derivatives. The latter technique permitted the degrees of substitution to be determined, which were found to vary between 81% and 95% for acetylation, benzoylation, and carbanilation, accompanied by similarly high gains in weight percent values. Thermogravimetric measurements showed that the resulting materials exhibit different thermal stabilities from those of the starting wood, while differential scanning calorimetry showed discrete new thermal transitions for these derivatives. Scanning electron microscopy showed the complete absence of fibrous characteristics for these derivatives, but instead, a homogeneous porous, powdery appearance was apparent. A number of our reactions were also carried out in completely recycled ionic liquids, verifying their utility for potential applications beyond the laboratory bench.
AB - Homogenous acylation and carbanilation reactions of wood-based lignocellulosic materials have been investigated in ionic liquids. We have found that highly substituted lignocellulosic esters can be obtained under mild conditions (2 h, 70°C) by reacting wood dissolved in ionic liquids with acetyl chloride, benzoyl chloride, and acetic anhydride in the presence of pyridine. In the absence of pyridine, extensive degradation of the wood components was found to occur. Highly substituted carbanilated lignocellulosic material was also obtained in the absence of base in ionic liquid. These chemical modifications were confirmed by infrared spectroscopy, 1H NMR, and quantitative 31P NMR of the resulting derivatives. The latter technique permitted the degrees of substitution to be determined, which were found to vary between 81% and 95% for acetylation, benzoylation, and carbanilation, accompanied by similarly high gains in weight percent values. Thermogravimetric measurements showed that the resulting materials exhibit different thermal stabilities from those of the starting wood, while differential scanning calorimetry showed discrete new thermal transitions for these derivatives. Scanning electron microscopy showed the complete absence of fibrous characteristics for these derivatives, but instead, a homogeneous porous, powdery appearance was apparent. A number of our reactions were also carried out in completely recycled ionic liquids, verifying their utility for potential applications beyond the laboratory bench.
UR - http://www.scopus.com/inward/record.url?scp=38049085618&partnerID=8YFLogxK
U2 - 10.1021/bm700679s
DO - 10.1021/bm700679s
M3 - Article
C2 - 17979237
AN - SCOPUS:38049085618
SN - 1525-7797
VL - 8
SP - 3740
EP - 3748
JO - Biomacromolecules
JF - Biomacromolecules
IS - 12
ER -