Abstract
TiC–20 wt% Ni3Al and TiC–40 wt% Ni3Al composite materials were produced by self-propagating high-temperature synthesis (SHS) and hot isostatic pressing (HIP). In the SHS method the reacted powders were compacted by uniaxial pressing immediately after the reaction. The microstructure of the materials produced by SHS consisted of spherical carbides embedded in the Ni3Al matrix, whereas the microstructure of the materials produced by HIPing was more irregular. A maximum hardness of 2010 HV1 was measured for the material produced by HIP and a maximum fracture toughness of 10.5 MPa m1/2 was measured for materials produced by SHS. High-temperature resistance was investigated by exposing the materials to 800°C in air for 110 h. The results obtained showed that the TiC + Ni3Al composite materials can be recommended for use in environments consisting of oxidizing atmosphere at temperatures around 800°C where high wear resistance is required.
Original language | English |
---|---|
Pages (from-to) | 253-258 |
Journal | Journal of Materials Synthesis and Processing |
Volume | 7 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1999 |
MoE publication type | A1 Journal article-refereed |