Abstract
The problem of joining the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) sectors, considering the tolerance requirements of the blanket attachments, and the time required for TIG welding, continues to stimulate EU R&D into power beam welding techniques which can yield fewer passes, less welding time and lower distortion. The previous work on reduced pressure e-beam welding showed that penetration varied with position, fit-up, distance and pressure and single-pass weld control was deemed to be not reliable enough so the work direction changed to an all-e-beam welding procedure where the root weld is carried out with rest-current-control and the fill passes by wire-fill. In addition, a novel method of increasing the possible single-pass weld thickness for overhead positions is investigated demonstrated and now patented. Another solution may be offered with wire-fill NdYAG laser welding, which has demonstrated useable and stable results and proved improved performance over TIG. Preliminary work has shown even further advantages with the introduction of hybrid MIG/Laser welding.
Original language | English |
---|---|
Pages (from-to) | 215-220 |
Number of pages | 6 |
Journal | Fusion Engineering and Design |
Volume | 69 |
Issue number | 1-4 |
DOIs | |
Publication status | Published - 2003 |
MoE publication type | A1 Journal article-refereed |
Keywords
- welding