TY - JOUR
T1 - Towards Extensive Definition and Planning of Energy Resilience in Buildings in Cold Climate
AU - Rehman, Hassam
AU - Hamdy, Mohamed
AU - Hasan, Ala
PY - 2024/5/17
Y1 - 2024/5/17
N2 - The transition towards a sustainable future requires the reliable performance of the building’s energy system in order for the building to be energy-resilient. “Energy resilient building in cold climates” is an emerging concept that defines the ability to maintain a minimum level of indoor air temperature and energy performance of the building and minimize the occupant’s health risk during a disruptive event of the grid’s power supply loss in a cold climate. The aim is to introduce an extensive definition of the energy resilience of buildings and apply it in case studies. This article first reviews the progress and provides an overview of the energy-resilient building concept. The review shows that most of the relevant focus is on short-term energy resilience, and the serious gap is related to long-term resilience in the context of cold regions. The article presents a basic definition of energy resilience of buildings, a systematic framework, and indicators for analyzing the energy resilience of buildings. Terms such as active and passive habitability, survivability, and adaptive habitable conditions are defined. The energy resilience indicators are applied on two simulated Finnish case studies, an old building and a new building. By systematic analysis, using the defined indicators and thresholds, the energy resilience performance of the buildings is calculated and compared. Depending on the type of the building, the results show that the robustness period is 11 h and 26 h for the old building and the new building, respectively. The old building failed to provide the habitability conditions. The impact of the event is 8.9 °C, minimum performance (Pmin) is 12.54 °C, and degree of disruption (DoD) is 0.300 for the old building. The speed of collapse (SoC) is 3.75 °C/h, and the speed of recovery (SoR) is 0.64 °C/h. On the other hand, the new building performed better such that the impact of the event is 4 °C, Pmin is 17.5 °C, and DoD is 0.138. The SoC is slow 3.2 °C/h and SoR is fast 0.80 °C/h for the new building. The results provide a pathway for improvements for long-term energy resilience. In conclusion, this work supports society and policy-makers to build a sustainable and resilient society.
AB - The transition towards a sustainable future requires the reliable performance of the building’s energy system in order for the building to be energy-resilient. “Energy resilient building in cold climates” is an emerging concept that defines the ability to maintain a minimum level of indoor air temperature and energy performance of the building and minimize the occupant’s health risk during a disruptive event of the grid’s power supply loss in a cold climate. The aim is to introduce an extensive definition of the energy resilience of buildings and apply it in case studies. This article first reviews the progress and provides an overview of the energy-resilient building concept. The review shows that most of the relevant focus is on short-term energy resilience, and the serious gap is related to long-term resilience in the context of cold regions. The article presents a basic definition of energy resilience of buildings, a systematic framework, and indicators for analyzing the energy resilience of buildings. Terms such as active and passive habitability, survivability, and adaptive habitable conditions are defined. The energy resilience indicators are applied on two simulated Finnish case studies, an old building and a new building. By systematic analysis, using the defined indicators and thresholds, the energy resilience performance of the buildings is calculated and compared. Depending on the type of the building, the results show that the robustness period is 11 h and 26 h for the old building and the new building, respectively. The old building failed to provide the habitability conditions. The impact of the event is 8.9 °C, minimum performance (Pmin) is 12.54 °C, and degree of disruption (DoD) is 0.300 for the old building. The speed of collapse (SoC) is 3.75 °C/h, and the speed of recovery (SoR) is 0.64 °C/h. On the other hand, the new building performed better such that the impact of the event is 4 °C, Pmin is 17.5 °C, and DoD is 0.138. The SoC is slow 3.2 °C/h and SoR is fast 0.80 °C/h for the new building. The results provide a pathway for improvements for long-term energy resilience. In conclusion, this work supports society and policy-makers to build a sustainable and resilient society.
KW - cold climates
KW - definition
KW - energy crisis
KW - energy resilience of buildings
KW - framework
KW - indicators
KW - long term
UR - http://www.scopus.com/inward/record.url?scp=85194457774&partnerID=8YFLogxK
U2 - 10.3390/buildings14051453
DO - 10.3390/buildings14051453
M3 - Article
SN - 2075-5309
VL - 14
JO - Buildings
JF - Buildings
IS - 5
M1 - 1453
ER -