Trace gas detection and high-precision spectroscopy in the mid-infrared and visible wavelength regions: Dissertation

Jari Peltola

Research output: ThesisDissertationCollection of Articles

Abstract

This thesis is based on four experimental spectroscopic studies where novel highly sensitive laser absorption spectroscopy spectrometers are developed and used for trace gas detection and precision spectroscopy. Most of the studies are carried out in the mid-infrared region between 3 and 4 µm, where a homebuilt continuous-wave singly resonating optical parametric oscillator is used as a light source. In addition, one study has been performed in the visible region using a commercial green laser at 532 nm. Two of the developed spectroscopic applications are based on cavity ring-down spectroscopy. In this thesis, the first off-axis re-entrant cavity ring-down spectrometer in the mid-infrared is demonstrated and utilized for highly sensitive detection of formaldehyde. The second study presents an optical frequency comb referenced mid-infrared continuous-wave singly resonating optical parametric oscillator, which is applied to high-precision cavity ring-down spectroscopy of nitrous oxide and methane. Furthermore, this study presents a new method for referencing a mid-infrared optical parametric oscillator to a near-infrared optical frequency comb. This new method allows large mode-hop-free frequency tuning ranges in the mid-infrared region. The other two experiments are based on cantilever-enhanced photoacoustic spectroscopy, presenting the first reported studies of cantilever-enhanced-based trace gas detection in the mid-infrared and visible region. These studies show the great potential of cantilever-enhanced photoacoustic detection for substantial enhancement of the sensitivity of trace gas detection. For instance, the best nitrogen dioxide detection limit ever reported using photoacoustic spectroscopy is presented in this thesis.
Original languageEnglish
QualificationDoctor Degree
Awarding Institution
  • University of Helsinki
Supervisors/Advisors
  • Halonen, Lauri, Supervisor, External person
  • Vainio, Markku, Advisor, External person
  • Siltanen, Mikael, Advisor, External person
Award date2 Dec 2015
Place of PublicationHelsinki
Publisher
Print ISBNs978-951-51-1663-5
Electronic ISBNs978-951-51-1664-2
Publication statusPublished - 2015
MoE publication typeG5 Doctoral dissertation (article)

Fingerprint

theses
parametric amplifiers
gases
wavelengths
spectroscopy
photoacoustic spectroscopy
cavities
continuous radiation
rings
spectrometers
nitrogen dioxide
nitrous oxides
formaldehyde
laser spectroscopy
absorption spectroscopy
light sources
methane
tuning
augmentation
sensitivity

Cite this

@phdthesis{04def8508fac43f2bd3e1eb7e68c0fad,
title = "Trace gas detection and high-precision spectroscopy in the mid-infrared and visible wavelength regions: Dissertation",
abstract = "This thesis is based on four experimental spectroscopic studies where novel highly sensitive laser absorption spectroscopy spectrometers are developed and used for trace gas detection and precision spectroscopy. Most of the studies are carried out in the mid-infrared region between 3 and 4 µm, where a homebuilt continuous-wave singly resonating optical parametric oscillator is used as a light source. In addition, one study has been performed in the visible region using a commercial green laser at 532 nm. Two of the developed spectroscopic applications are based on cavity ring-down spectroscopy. In this thesis, the first off-axis re-entrant cavity ring-down spectrometer in the mid-infrared is demonstrated and utilized for highly sensitive detection of formaldehyde. The second study presents an optical frequency comb referenced mid-infrared continuous-wave singly resonating optical parametric oscillator, which is applied to high-precision cavity ring-down spectroscopy of nitrous oxide and methane. Furthermore, this study presents a new method for referencing a mid-infrared optical parametric oscillator to a near-infrared optical frequency comb. This new method allows large mode-hop-free frequency tuning ranges in the mid-infrared region. The other two experiments are based on cantilever-enhanced photoacoustic spectroscopy, presenting the first reported studies of cantilever-enhanced-based trace gas detection in the mid-infrared and visible region. These studies show the great potential of cantilever-enhanced photoacoustic detection for substantial enhancement of the sensitivity of trace gas detection. For instance, the best nitrogen dioxide detection limit ever reported using photoacoustic spectroscopy is presented in this thesis.",
author = "Jari Peltola",
note = "BA1171",
year = "2015",
language = "English",
isbn = "978-951-51-1663-5",
publisher = "University of Helsinki",
address = "Finland",
school = "University of Helsinki",

}

Trace gas detection and high-precision spectroscopy in the mid-infrared and visible wavelength regions : Dissertation. / Peltola, Jari.

Helsinki : University of Helsinki, 2015. 48 p.

Research output: ThesisDissertationCollection of Articles

TY - THES

T1 - Trace gas detection and high-precision spectroscopy in the mid-infrared and visible wavelength regions

T2 - Dissertation

AU - Peltola, Jari

N1 - BA1171

PY - 2015

Y1 - 2015

N2 - This thesis is based on four experimental spectroscopic studies where novel highly sensitive laser absorption spectroscopy spectrometers are developed and used for trace gas detection and precision spectroscopy. Most of the studies are carried out in the mid-infrared region between 3 and 4 µm, where a homebuilt continuous-wave singly resonating optical parametric oscillator is used as a light source. In addition, one study has been performed in the visible region using a commercial green laser at 532 nm. Two of the developed spectroscopic applications are based on cavity ring-down spectroscopy. In this thesis, the first off-axis re-entrant cavity ring-down spectrometer in the mid-infrared is demonstrated and utilized for highly sensitive detection of formaldehyde. The second study presents an optical frequency comb referenced mid-infrared continuous-wave singly resonating optical parametric oscillator, which is applied to high-precision cavity ring-down spectroscopy of nitrous oxide and methane. Furthermore, this study presents a new method for referencing a mid-infrared optical parametric oscillator to a near-infrared optical frequency comb. This new method allows large mode-hop-free frequency tuning ranges in the mid-infrared region. The other two experiments are based on cantilever-enhanced photoacoustic spectroscopy, presenting the first reported studies of cantilever-enhanced-based trace gas detection in the mid-infrared and visible region. These studies show the great potential of cantilever-enhanced photoacoustic detection for substantial enhancement of the sensitivity of trace gas detection. For instance, the best nitrogen dioxide detection limit ever reported using photoacoustic spectroscopy is presented in this thesis.

AB - This thesis is based on four experimental spectroscopic studies where novel highly sensitive laser absorption spectroscopy spectrometers are developed and used for trace gas detection and precision spectroscopy. Most of the studies are carried out in the mid-infrared region between 3 and 4 µm, where a homebuilt continuous-wave singly resonating optical parametric oscillator is used as a light source. In addition, one study has been performed in the visible region using a commercial green laser at 532 nm. Two of the developed spectroscopic applications are based on cavity ring-down spectroscopy. In this thesis, the first off-axis re-entrant cavity ring-down spectrometer in the mid-infrared is demonstrated and utilized for highly sensitive detection of formaldehyde. The second study presents an optical frequency comb referenced mid-infrared continuous-wave singly resonating optical parametric oscillator, which is applied to high-precision cavity ring-down spectroscopy of nitrous oxide and methane. Furthermore, this study presents a new method for referencing a mid-infrared optical parametric oscillator to a near-infrared optical frequency comb. This new method allows large mode-hop-free frequency tuning ranges in the mid-infrared region. The other two experiments are based on cantilever-enhanced photoacoustic spectroscopy, presenting the first reported studies of cantilever-enhanced-based trace gas detection in the mid-infrared and visible region. These studies show the great potential of cantilever-enhanced photoacoustic detection for substantial enhancement of the sensitivity of trace gas detection. For instance, the best nitrogen dioxide detection limit ever reported using photoacoustic spectroscopy is presented in this thesis.

M3 - Dissertation

SN - 978-951-51-1663-5

PB - University of Helsinki

CY - Helsinki

ER -