Tunable phonon-cavity coupling in graphene membranes

R. De Alba, F. Massel, I. R. Storch, T. S. Abhilash, A. Hui, P. L. McEuen, H. G. Craighead, J. M. Parpia

Research output: Contribution to journalArticleScientificpeer-review

119 Citations (Scopus)

Abstract

A major achievement of the past decade has been the realization of macroscopic quantum systems by exploiting the interactions between optical cavities and mechanical resonators. In these systems, phonons are coherently annihilated or created in exchange for photons. Similar phenomena have recently been observed through phonon-cavity coupling - energy exchange between the modes of a single system mediated by intrinsic material nonlinearity. This has so far been demonstrated primarily for bulk crystalline, high-quality-factor (Q > 105) mechanical systems operated at cryogenic temperatures. Here, we propose graphene as an ideal candidate for the study of such nonlinear mechanics. The large elastic modulus of this material and capability for spatial symmetry breaking via electrostatic forces is expected to generate a wealth of nonlinear phenomena, including tunable intermodal coupling. We have fabricated circular graphene membranes and report strong phonon-cavity effects at room temperature, despite the modest Q factor (∼100) of this system. We observe both amplification into parametric instability (mechanical lasing) and the cooling of Brownian motion in the fundamental mode through excitation of cavity sidebands. Furthermore, we characterize the quenching of these parametric effects at large vibrational amplitudes, offering a window on the all-mechanical analogue of cavity optomechanics, where the observation of such effects has proven elusive.

Original languageEnglish
Pages (from-to)741-746
Number of pages6
JournalNature Nanotechnology
Volume11
Issue number9
DOIs
Publication statusPublished - 7 Sept 2016
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Tunable phonon-cavity coupling in graphene membranes'. Together they form a unique fingerprint.

Cite this