TY - JOUR
T1 - Two-point Stokes vector diagnostic approach for characterization of optically anisotropic biological tissues
AU - Peyvasteh, Motahareh
AU - Dubolazov, Alexander
AU - Popov, Alexey
AU - Ushenko, Alexander
AU - Ushenko, Yuriy
AU - Meglinski, Igor
PY - 2020
Y1 - 2020
N2 - The purpose of the study is to demonstrate a new method of Stokes-correlometric evaluation of polarization-inhomogeneous images of optically thin (optical thickness smaller than 0.01) histological sections from optically anisotropic biological tissues of different morphological structure. This method is based on a correlation ('two-point') generalization of traditional optical methods for analyzing 'one-point' distributions of polarization states of microscopic images of biological tissues. Analytical algorithms are obtained for describing the 'two-point' complex parameters of the Stokes vector image of a birefringent biological tissue. An experimental technique has been developed for measuring polarization-correlation maps, i.e. the coordinate distributions of the magnitude and phase of the 'two-point' Stokes vector parameters. Within the framework of the statistical and correlation analysis of the obtained data, new quantitative criteria for the differentiation of the optical properties of biological tissues of various morphological structures are found. A comparative analysis of the distribution of the 'single-point' and 'two-point' parameters of the Stokes vector of polarizationally inhomogeneous images was performed. It revealed a higher sensitivity (2-5 times) of the Stokes-correlometry method to variations in orientation-phase structure of biological tissues compared to the single-point approach.
AB - The purpose of the study is to demonstrate a new method of Stokes-correlometric evaluation of polarization-inhomogeneous images of optically thin (optical thickness smaller than 0.01) histological sections from optically anisotropic biological tissues of different morphological structure. This method is based on a correlation ('two-point') generalization of traditional optical methods for analyzing 'one-point' distributions of polarization states of microscopic images of biological tissues. Analytical algorithms are obtained for describing the 'two-point' complex parameters of the Stokes vector image of a birefringent biological tissue. An experimental technique has been developed for measuring polarization-correlation maps, i.e. the coordinate distributions of the magnitude and phase of the 'two-point' Stokes vector parameters. Within the framework of the statistical and correlation analysis of the obtained data, new quantitative criteria for the differentiation of the optical properties of biological tissues of various morphological structures are found. A comparative analysis of the distribution of the 'single-point' and 'two-point' parameters of the Stokes vector of polarizationally inhomogeneous images was performed. It revealed a higher sensitivity (2-5 times) of the Stokes-correlometry method to variations in orientation-phase structure of biological tissues compared to the single-point approach.
UR - http://www.scopus.com/inward/record.url?scp=85088048414&partnerID=8YFLogxK
U2 - 10.1088/1361-6463/ab9571
DO - 10.1088/1361-6463/ab9571
M3 - Article
AN - SCOPUS:85088048414
SN - 0022-3727
VL - 53
JO - Journal of Physics D: Applied Physics
JF - Journal of Physics D: Applied Physics
IS - 39
M1 - 395401
ER -