Abstract
According to the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol under it, industrial countries have to estimate their greenhouse gas emissions annually, and assess the uncertainties in these estimates. In Finland, agricultural methane (CH4) and nitrous oxide (N2O) emissions represent 7% of anthropogenic greenhouse gas emissions, and globally the share is much higher. Agriculture is one of the most uncertain emission categories (representing over 20% of greenhouse gas inventory uncertainty in Finland), due to both high natural variability of the emission sources and poor knowledge of the emission-generating processes. In this paper, we present an uncertainty estimate of agricultural CH4 and N2O emissions from Finland in 2002.
Uncertainties were estimated based on measurement data, literature and expert judgement, and total uncertainty in agriculture was calculated using Monte Carlo simulation. According to the calculations, agricultural CH4 and N2O emissions from Finland were 3.7 to 7.8 Tg carbon dioxide (CO2) equivalents, 5.4 Tg being the mean value.Estimates of CH4 emissions are more reliable than those of N2O.
N2O from agricultural soils was the most uncertain emission category, and the uncertainty was not reduced by using available national measurement data of N2O fluxes.
Sensitivity study revealed that the uncertainty in total agricultural inventory could be 7% points lower, if more accurate emission estimation methods were used, including 1) improved data collection in area estimates of organic soils, 2) climate-specific methods for N2O from agricultural soils as already presented in literature, and 3) more detailed CH4 estimation methods for enteric fermentation which can be achieved by investigating national circumstances and digestible systems of animals in more detail.
Uncertainties were estimated based on measurement data, literature and expert judgement, and total uncertainty in agriculture was calculated using Monte Carlo simulation. According to the calculations, agricultural CH4 and N2O emissions from Finland were 3.7 to 7.8 Tg carbon dioxide (CO2) equivalents, 5.4 Tg being the mean value.Estimates of CH4 emissions are more reliable than those of N2O.
N2O from agricultural soils was the most uncertain emission category, and the uncertainty was not reduced by using available national measurement data of N2O fluxes.
Sensitivity study revealed that the uncertainty in total agricultural inventory could be 7% points lower, if more accurate emission estimation methods were used, including 1) improved data collection in area estimates of organic soils, 2) climate-specific methods for N2O from agricultural soils as already presented in literature, and 3) more detailed CH4 estimation methods for enteric fermentation which can be achieved by investigating national circumstances and digestible systems of animals in more detail.
Original language | English |
---|---|
Pages (from-to) | 545-571 |
Journal | Mitigation and Adaptation Strategies for Global Change |
Volume | 12 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2007 |
MoE publication type | A1 Journal article-refereed |
Keywords
- agricultural soils
- agriculture
- greenhouse gases
- climate change
- methane
- nitrous oxide
- uncertainty
- UNFCCC